RoboCook:使用多樣工具進行長時間視野的彈塑性物體操作
RoboCook: Long-Horizon Elasto-Plastic Object Manipulation with Diverse Tools
June 26, 2023
作者: Haochen Shi, Huazhe Xu, Samuel Clarke, Yunzhu Li, Jiajun Wu
cs.AI
摘要
人類在複雜的長期軟體操作任務中表現出色,透過靈活的工具使用:烘培麵包需要用刀切割麵團,用擀麵棍擀平。被視為人類認知的標誌,自主機器人中的工具使用仍然受限於理解工具-物體互動的挑戰。在這裡,我們開發了一個智能機器人系統 RoboCook,它能感知、建模和操作具有不同工具的彈塑性物體。RoboCook 使用點雲場景表示,用圖神經網絡 (GNNs) 建模工具-物體互動,並結合工具分類與自監督策略學習來制定操作計劃。我們展示,通過僅僅 20 分鐘的真實世界互動數據,一臺通用機器人手臂可以學會複雜的長期軟體物體操作任務,例如製作餃子和字母曲奇餅乾。廣泛的評估顯示,RoboCook 顯著優於最先進的方法,具有抵抗嚴重外部干擾的穩健性,並展現對不同材料的適應能力。
English
Humans excel in complex long-horizon soft body manipulation tasks via
flexible tool use: bread baking requires a knife to slice the dough and a
rolling pin to flatten it. Often regarded as a hallmark of human cognition,
tool use in autonomous robots remains limited due to challenges in
understanding tool-object interactions. Here we develop an intelligent robotic
system, RoboCook, which perceives, models, and manipulates elasto-plastic
objects with various tools. RoboCook uses point cloud scene representations,
models tool-object interactions with Graph Neural Networks (GNNs), and combines
tool classification with self-supervised policy learning to devise manipulation
plans. We demonstrate that from just 20 minutes of real-world interaction data
per tool, a general-purpose robot arm can learn complex long-horizon soft
object manipulation tasks, such as making dumplings and alphabet letter
cookies. Extensive evaluations show that RoboCook substantially outperforms
state-of-the-art approaches, exhibits robustness against severe external
disturbances, and demonstrates adaptability to different materials.