自動指導:對於黑盒語言模型的自動指令生成和排名
Auto-Instruct: Automatic Instruction Generation and Ranking for Black-Box Language Models
October 19, 2023
作者: Zhihan Zhang, Shuohang Wang, Wenhao Yu, Yichong Xu, Dan Iter, Qingkai Zeng, Yang Liu, Chenguang Zhu, Meng Jiang
cs.AI
摘要
大型語言模型(LLMs)可以通過遵循自然語言指令執行各種任務,而無需進行特定任務的微調。不幸的是,LLMs 的表現受這些指令的質量影響很大,並且為每個任務手動編寫有效的指令是一個費時且主觀的過程。在本文中,我們介紹了一種名為Auto-Instruct的新方法,用於自動提高提供給LLMs的指令的質量。我們的方法利用LLMs固有的生成能力為給定任務生成多樣的候選指令,然後使用在575個現有NLP任務上訓練的評分模型對它們進行排名。在對118個域外任務進行的實驗中,Auto-Instruct超越了人工編寫的指令和現有的LLM生成的指令基線。此外,我們的方法展現出顯著的泛化能力,即使對於未納入其訓練過程的其他LLMs也是如此。
English
Large language models (LLMs) can perform a wide range of tasks by following
natural language instructions, without the necessity of task-specific
fine-tuning. Unfortunately, the performance of LLMs is greatly influenced by
the quality of these instructions, and manually writing effective instructions
for each task is a laborious and subjective process. In this paper, we
introduce Auto-Instruct, a novel method to automatically improve the quality of
instructions provided to LLMs. Our method leverages the inherent generative
ability of LLMs to produce diverse candidate instructions for a given task, and
then ranks them using a scoring model trained on a variety of 575 existing NLP
tasks. In experiments on 118 out-of-domain tasks, Auto-Instruct surpasses both
human-written instructions and existing baselines of LLM-generated
instructions. Furthermore, our method exhibits notable generalizability even
with other LLMs that are not incorporated into its training process.