互動、指導以提升:基於大型語言模型的平行行動者-推理者框架,用於增強自動駕駛車輛的交互能力
Interact, Instruct to Improve: A LLM-Driven Parallel Actor-Reasoner Framework for Enhancing Autonomous Vehicle Interactions
March 1, 2025
作者: Shiyu Fang, Jiaqi Liu, Chengkai Xu, Chen Lv, Peng Hang, Jian Sun
cs.AI
摘要
自動駕駛車輛(AVs)已進入商業化階段,但其在與人類駕駛車輛(HVs)互動及表達意圖方面的能力仍顯不足,這在實際交互中帶來了挑戰。近期大型語言模型(LLMs)的進展實現了雙向人機溝通,然而,推理速度慢與實時決策需求之間的矛盾,對實際部署構成了挑戰。為解決這些問題,本文提出了一種並行的執行者-推理者框架,旨在實現多場景下AV與HV之間明確的雙向互動。首先,通過在訓練過程中促進LLM驅動的推理者與異構模擬HVs的互動,建立了一個被稱為執行者的互動記憶數據庫。隨後,通過引入記憶分區模塊和雙層記憶檢索模塊,顯著增強了執行者處理異構HVs的能力。消融研究及與其他決策方法的比較表明,所提出的執行者-推理者框架顯著提升了安全性和效率。最後,結合推理者推理得出的外部人機界面(eHMI)信息與從執行者檢索到的可行行動方案,在多場景實地互動中驗證了所提執行者-推理者框架的有效性。我們的代碼可在https://github.com/FanGShiYuu/Actor-Reasoner獲取。
English
Autonomous Vehicles (AVs) have entered the commercialization stage, but their
limited ability to interact and express intentions still poses challenges in
interactions with Human-driven Vehicles (HVs). Recent advances in large
language models (LLMs) enable bidirectional human-machine communication, but
the conflict between slow inference speed and the need for real-time
decision-making challenges practical deployment. To address these issues, this
paper introduces a parallel Actor-Reasoner framework designed to enable
explicit bidirectional AV-HV interactions across multiple scenarios. First, by
facilitating interactions between the LLM-driven Reasoner and heterogeneous
simulated HVs during training, an interaction memory database, referred to as
the Actor, is established. Then, by introducing the memory partition module and
the two-layer memory retrieval module, the Actor's ability to handle
heterogeneous HVs is significantly enhanced. Ablation studies and comparisons
with other decision-making methods demonstrate that the proposed Actor-Reasoner
framework significantly improves safety and efficiency. Finally, with the
combination of the external Human-Machine Interface (eHMI) information derived
from Reasoner's reasoning and the feasible action solutions retrieved from the
Actor, the effectiveness of the proposed Actor-Reasoner is confirmed in
multi-scenario field interactions. Our code is available at
https://github.com/FanGShiYuu/Actor-Reasoner.Summary
AI-Generated Summary