DREAM:擴散校正與估計自適應模型
DREAM: Diffusion Rectification and Estimation-Adaptive Models
November 30, 2023
作者: Jinxin Zhou, Tianyu Ding, Tianyi Chen, Jiachen Jiang, Ilya Zharkov, Zhihui Zhu, Luming Liang
cs.AI
摘要
我們提出了DREAM,一個新穎的訓練框架,代表Diffusion Rectification and Estimation-Adaptive Models,只需要進行最少的程式碼更改(僅三行),卻顯著增強了訓練與擴散模型取樣之間的對齊。DREAM具有兩個組件:擴散校正,調整訓練以反映取樣過程,以及估計適應,平衡感知和失真之間的關係。當應用於影像超分辨率(SR)時,DREAM能夠巧妙地在最小化失真與保留高影像質量之間找到平衡。實驗證明DREAM優於標準基於擴散的SR方法,顯示訓練收斂速度快2到3倍,所需取樣步驟減少10到20倍,以達到可比或更優質的結果。我們希望DREAM能激發對擴散模型訓練範式的重新思考。
English
We present DREAM, a novel training framework representing Diffusion
Rectification and Estimation-Adaptive Models, requiring minimal code changes
(just three lines) yet significantly enhancing the alignment of training with
sampling in diffusion models. DREAM features two components: diffusion
rectification, which adjusts training to reflect the sampling process, and
estimation adaptation, which balances perception against distortion. When
applied to image super-resolution (SR), DREAM adeptly navigates the tradeoff
between minimizing distortion and preserving high image quality. Experiments
demonstrate DREAM's superiority over standard diffusion-based SR methods,
showing a 2 to 3times faster training convergence and a 10 to
20times reduction in necessary sampling steps to achieve comparable or
superior results. We hope DREAM will inspire a rethinking of diffusion model
training paradigms.