ChatPaper.aiChatPaper

Trinity-RFT:一個通用且統一的強化微調框架,適用於大型語言模型

Trinity-RFT: A General-Purpose and Unified Framework for Reinforcement Fine-Tuning of Large Language Models

May 23, 2025
作者: Xuchen Pan, Yanxi Chen, Yushuo Chen, Yuchang Sun, Daoyuan Chen, Wenhao Zhang, Yuexiang Xie, Yilun Huang, Yilei Zhang, Dawei Gao, Yaliang Li, Bolin Ding, Jingren Zhou
cs.AI

摘要

Trinity-RFT 是一個通用、靈活且可擴展的框架,專為大型語言模型的強化微調(RFT)而設計。它採用解耦式架構,包含:(1) 一個 RFT 核心,統一並泛化了同步/異步、在線/離線以及同策略/異策略的 RFT 模式;(2) 高效且穩健的智能體-環境交互無縫集成;(3) 針對 RFT 優化的系統化數據管道。Trinity-RFT 能輕鬆適應多樣化的應用場景,並作為探索先進強化學習範式的統一平台。本技術報告概述了 Trinity-RFT 的願景、特性、設計與實現,並附有大量示例,展示了該框架的實用性與用戶友好性。
English
Trinity-RFT is a general-purpose, flexible and scalable framework designed for reinforcement fine-tuning (RFT) of large language models. It is built with a decoupled design, consisting of (1) an RFT-core that unifies and generalizes synchronous/asynchronous, on-policy/off-policy, and online/offline modes of RFT, (2) seamless integration for agent-environment interaction with high efficiency and robustness, and (3) systematic data pipelines optimized for RFT. Trinity-RFT can be easily adapted for diverse application scenarios, and serves as a unified platform for exploring advanced reinforcement learning paradigms. This technical report outlines the vision, features, design and implementations of Trinity-RFT, accompanied by extensive examples demonstrating the utility and user-friendliness of the proposed framework.

Summary

AI-Generated Summary

PDF92May 26, 2025