利用全身模型預測控制和黑盒策略學習的敏捷捕捉
Agile Catching with Whole-Body MPC and Blackbox Policy Learning
June 14, 2023
作者: Saminda Abeyruwan, Alex Bewley, Nicholas M. Boffi, Krzysztof Choromanski, David D'Ambrosio, Deepali Jain, Pannag Sanketi, Anish Shankar, Vikas Sindhwani, Sumeet Singh, Jean-Jacques Slotine, Stephen Tu
cs.AI
摘要
我們探討敏捷機器人中的一項基準任務:捕捉以高速投擲的物體。這是一項具有挑戰性的任務,涉及跟踪、截取和保護一個被投擲的物體,僅通過對物體的視覺觀察和機器人的本體感知狀態,在幾分之一秒內完成。我們介紹兩種基本不同解決方案策略的相對優點:(i)使用加速受限軌跡優化的模型預測控制,和(ii)使用零階優化的強化學習。我們提供有關各種性能折衷的見解,包括樣本效率、從模擬到實際的轉移、對分布變化的穩健性,以及通過大量硬件實驗實現全身多模態。最後,我們提出將“傳統”和“基於學習”的技術融合用於敏捷機器人控制的建議。我們的實驗視頻可在以下網址找到:https://sites.google.com/view/agile-catching
English
We address a benchmark task in agile robotics: catching objects thrown at
high-speed. This is a challenging task that involves tracking, intercepting,
and cradling a thrown object with access only to visual observations of the
object and the proprioceptive state of the robot, all within a fraction of a
second. We present the relative merits of two fundamentally different solution
strategies: (i) Model Predictive Control using accelerated constrained
trajectory optimization, and (ii) Reinforcement Learning using zeroth-order
optimization. We provide insights into various performance trade-offs including
sample efficiency, sim-to-real transfer, robustness to distribution shifts, and
whole-body multimodality via extensive on-hardware experiments. We conclude
with proposals on fusing "classical" and "learning-based" techniques for agile
robot control. Videos of our experiments may be found at
https://sites.google.com/view/agile-catching