ChatPaper.aiChatPaper

形隨意動:基於軌跡引導區域控制的形狀感知圖像編輯

Follow-Your-Shape: Shape-Aware Image Editing via Trajectory-Guided Region Control

August 11, 2025
作者: Zeqian Long, Mingzhe Zheng, Kunyu Feng, Xinhua Zhang, Hongyu Liu, Harry Yang, Linfeng Zhang, Qifeng Chen, Yue Ma
cs.AI

摘要

尽管近期的基于流的图像编辑模型展现了跨多种任务的通用能力,但在处理具有挑战性的场景时,尤其是涉及大规模形状变换的情况,这些模型往往难以专精。在执行此类结构性编辑时,这些方法要么未能实现预期的形状改变,要么无意中改变了非目标区域,导致背景质量下降。我们提出了“随形而动”(Follow-Your-Shape),一个无需训练且无需掩码的框架,支持精确且可控的对象形状编辑,同时严格保护非目标内容。受反转与编辑轨迹间差异的启发,我们通过比较反转路径与去噪路径间逐令牌的速度差异,计算出一个轨迹差异图(Trajectory Divergence Map, TDM)。TDM能够精确定位可编辑区域,并指导一个预定的键值注入机制(Scheduled KV Injection),确保编辑过程的稳定性和忠实性。为了促进严谨的评估,我们引入了ReShapeBench,这是一个包含120张新图像及丰富提示对的新基准,专门为形状感知编辑而设计。实验表明,我们的方法在可编辑性和视觉保真度上均表现出色,特别是在需要大规模形状替换的任务中。
English
While recent flow-based image editing models demonstrate general-purpose capabilities across diverse tasks, they often struggle to specialize in challenging scenarios -- particularly those involving large-scale shape transformations. When performing such structural edits, these methods either fail to achieve the intended shape change or inadvertently alter non-target regions, resulting in degraded background quality. We propose Follow-Your-Shape, a training-free and mask-free framework that supports precise and controllable editing of object shapes while strictly preserving non-target content. Motivated by the divergence between inversion and editing trajectories, we compute a Trajectory Divergence Map (TDM) by comparing token-wise velocity differences between the inversion and denoising paths. The TDM enables precise localization of editable regions and guides a Scheduled KV Injection mechanism that ensures stable and faithful editing. To facilitate a rigorous evaluation, we introduce ReShapeBench, a new benchmark comprising 120 new images and enriched prompt pairs specifically curated for shape-aware editing. Experiments demonstrate that our method achieves superior editability and visual fidelity, particularly in tasks requiring large-scale shape replacement.
PDF92August 12, 2025