步驟感知偏好優化:在每個步驟上將偏好與去噪效能對齊
Step-aware Preference Optimization: Aligning Preference with Denoising Performance at Each Step
June 6, 2024
作者: Zhanhao Liang, Yuhui Yuan, Shuyang Gu, Bohan Chen, Tiankai Hang, Ji Li, Liang Zheng
cs.AI
摘要
最近,直接偏好優化(DPO)已將其成功從對齊大型語言模型(LLMs)擴展到將文本到圖像擴散模型與人類偏好對齊。與大多數現有的DPO方法不同,這些方法假設所有擴散步驟與最終生成的圖像共享一致的偏好順序,我們認為這種假設忽略了每個步驟特定的去噪性能,並且應該為每個步驟的貢獻量定制偏好標籤。為了解決這一限制,我們提出了一種新的後訓練方法,即步驟感知偏好優化(SPO),該方法獨立評估並調整每個步驟的去噪性能,使用步驟感知偏好模型和逐步重採樣器來確保準確的步驟感知監督。具體來說,在每個去噪步驟中,我們對一組圖像進行抽樣,找到一對適當的勝負組合,更重要的是,從該組圖像中隨機選擇一個圖像來初始化下一個去噪步驟。這種逐步重採樣器過程確保下一個勝負圖像對來自同一個圖像,使勝負比較與上一步無關。為了評估每個步驟的偏好,我們訓練了一個獨立的步驟感知偏好模型,該模型可應用於噪聲和乾淨的圖像。我們使用Stable Diffusion v1.5和SDXL進行的實驗表明,SPO在對齊生成的圖像與複雜、詳細提示以及增強美學方面明顯優於最新的Diffusion-DPO,同時在訓練效率上實現了超過20倍的提升。代碼和模型:https://rockeycoss.github.io/spo.github.io/
English
Recently, Direct Preference Optimization (DPO) has extended its success from
aligning large language models (LLMs) to aligning text-to-image diffusion
models with human preferences. Unlike most existing DPO methods that assume all
diffusion steps share a consistent preference order with the final generated
images, we argue that this assumption neglects step-specific denoising
performance and that preference labels should be tailored to each step's
contribution. To address this limitation, we propose Step-aware Preference
Optimization (SPO), a novel post-training approach that independently evaluates
and adjusts the denoising performance at each step, using a step-aware
preference model and a step-wise resampler to ensure accurate step-aware
supervision. Specifically, at each denoising step, we sample a pool of images,
find a suitable win-lose pair, and, most importantly, randomly select a single
image from the pool to initialize the next denoising step. This step-wise
resampler process ensures the next win-lose image pair comes from the same
image, making the win-lose comparison independent of the previous step. To
assess the preferences at each step, we train a separate step-aware preference
model that can be applied to both noisy and clean images. Our experiments with
Stable Diffusion v1.5 and SDXL demonstrate that SPO significantly outperforms
the latest Diffusion-DPO in aligning generated images with complex, detailed
prompts and enhancing aesthetics, while also achieving more than 20x times
faster in training efficiency. Code and model:
https://rockeycoss.github.io/spo.github.io/Summary
AI-Generated Summary