EasySteer:一個統一的高性能與可擴展LLM導向框架
EasySteer: A Unified Framework for High-Performance and Extensible LLM Steering
September 29, 2025
作者: Haolei Xu, Xinyu Mei, Yuchen Yan, Rui Zhou, Wenqi Zhang, Weiming Lu, Yueting Zhuang, Yongliang Shen
cs.AI
摘要
大型語言模型(LLM)導向技術已成為一種前景廣闊的範式,通過對隱藏狀態的定向操控來在推理時控制模型行為,提供了一種輕量級的替代方案,避免了昂貴的重新訓練。然而,現有的導向框架存在關鍵限制:計算效率低下、擴展性有限以及功能受限,這些都阻礙了研究進展和實際部署。我們提出了EasySteer,這是一個基於vLLM構建的高性能、可擴展的LLM導向統一框架。我們的系統具有模塊化架構,提供可插拔的接口,支持基於分析和基於學習的方法,精細的參數控制,預先計算的八個應用領域的導向向量,以及一個互動演示系統。通過與vLLM優化的推理引擎深度集成,EasySteer相比現有框架實現了5.5至11.4倍的加速。大量實驗證明了其在緩解過度思考、減少幻覺以及其他關鍵應用中的有效性。EasySteer將導向技術從研究手段轉變為生產就緒的能力,為可部署、可控的語言模型建立了關鍵基礎設施。
English
Large language model (LLM) steering has emerged as a promising paradigm for
controlling model behavior at inference time through targeted manipulation of
hidden states, offering a lightweight alternative to expensive retraining.
However, existing steering frameworks suffer from critical limitations:
computational inefficiency, limited extensibility, and restricted functionality
that hinder both research progress and practical deployment. We present
EasySteer, a unified framework for high-performance, extensible LLM steering
built on vLLM. Our system features modular architecture with pluggable
interfaces for both analysis-based and learning-based methods, fine-grained
parameter control, pre-computed steering vectors for eight application domains,
and an interactive demonstration system. Through deep integration with vLLM's
optimized inference engine, EasySteer achieves 5.5-11.4times speedup over
existing frameworks. Extensive experiments demonstrate its effectiveness in
overthinking mitigation, hallucination reduction, and other key applications.
EasySteer transforms steering from research technique to production-ready
capability, establishing critical infrastructure for deployable, controllable
language models.