ChatPaper.aiChatPaper

MiniCPM-V 4.5:通過架構、數據與訓練配方烹製高效的多模態大語言模型

MiniCPM-V 4.5: Cooking Efficient MLLMs via Architecture, Data, and Training Recipe

September 16, 2025
作者: Tianyu Yu, Zefan Wang, Chongyi Wang, Fuwei Huang, Wenshuo Ma, Zhihui He, Tianchi Cai, Weize Chen, Yuxiang Huang, Yuanqian Zhao, Bokai Xu, Junbo Cui, Yingjing Xu, Liqing Ruan, Luoyuan Zhang, Hanyu Liu, Jingkun Tang, Hongyuan Liu, Qining Guo, Wenhao Hu, Bingxiang He, Jie Zhou, Jie Cai, Ji Qi, Zonghao Guo, Chi Chen, Guoyang Zeng, Yuxuan Li, Ganqu Cui, Ning Ding, Xu Han, Yuan Yao, Zhiyuan Liu, Maosong Sun
cs.AI

摘要

多模態大型語言模型(MLLMs)正經歷快速發展,代表了人工智慧領域的前沿。然而,其訓練與推理效率已成為提升MLLMs可及性與可擴展性的核心瓶頸。為應對這些挑戰,我們推出了MiniCPM-V 4.5,這是一個擁有80億參數的模型,專為高效能與強勁表現而設計。我們在模型架構、數據策略及訓練方法上引入了三大核心改進:針對圖像與視頻高度壓縮編碼的統一3D-Resampler模型架構、無需繁重數據工程的文檔知識與文本識別統一學習範式,以及適用於短長推理模式的混合強化學習策略。OpenCompass評估中的全面實驗結果顯示,MiniCPM-V 4.5超越了廣泛使用的專有模型如GPT-4o-latest,以及規模顯著更大的開源模型如Qwen2.5-VL 72B。值得注意的是,這一強勁表現是在極高效率下實現的。例如,在廣為採用的VideoMME基準測試中,MiniCPM-V 4.5在30B規模以下的模型中達到了頂尖性能,僅消耗了Qwen2.5-VL 7B 46.7%的GPU記憶體成本與8.7%的推理時間。
English
Multimodal Large Language Models (MLLMs) are undergoing rapid progress and represent the frontier of AI development. However, their training and inference efficiency have emerged as a core bottleneck in making MLLMs more accessible and scalable. To address the challenges, we present MiniCPM-V 4.5, an 8B parameter model designed for high efficiency and strong performance. We introduce three core improvements in model architecture, data strategy and training method: a unified 3D-Resampler model architecture for highly compact encoding over images and videos, a unified learning paradigm for document knowledge and text recognition without heavy data engineering, and a hybrid reinforcement learning strategy for proficiency in both short and long reasoning modes. Comprehensive experimental results in OpenCompass evaluation show that MiniCPM-V 4.5 surpasses widely used proprietary models such as GPT-4o-latest, and significantly larger open-source models such as Qwen2.5-VL 72B. Notably, the strong performance is achieved with remarkable efficiency. For example, on the widely adopted VideoMME benchmark, MiniCPM-V 4.5 achieves state-of-the-art performance among models under 30B size, using just 46.7\% GPU memory cost and 8.7\% inference time of Qwen2.5-VL 7B.
PDF464September 24, 2025