ChatPaper.aiChatPaper

视觉个性化图灵测试

Visual Personalization Turing Test

January 30, 2026
作者: Rameen Abdal, James Burgess, Sergey Tulyakov, Kuan-Chieh Jackson Wang
cs.AI

摘要

我们提出视觉个性化图灵测试(VPTT),这是一种基于感知不可区分性(而非身份复现)来评估情境化视觉个性化的新范式。当模型生成的图像、视频、3D资产等内容,在人类或经过校准的视觉语言模型评判下,与特定人物可能创作或分享的内容无法区分时,即视为通过VPTT。为实现该测试,我们构建了VPTT框架,包含万人角色基准数据集(VPTT-Bench)、视觉检索增强生成器(VPRAG)以及基于纯文本指标且与人机评判结果校准的VPTT分数。实验表明人类评估、VLM评估与VPTT评估结果高度相关,验证了VPTT分数可作为可靠的感知代理指标。测试结果证明VPRAG在还原度与原创性之间达到最佳平衡,为个性化生成式AI提供了可扩展且保护隐私的技术基础。
English
We introduce the Visual Personalization Turing Test (VPTT), a new paradigm for evaluating contextual visual personalization based on perceptual indistinguishability, rather than identity replication. A model passes the VPTT if its output (image, video, 3D asset, etc.) is indistinguishable to a human or calibrated VLM judge from content a given person might plausibly create or share. To operationalize VPTT, we present the VPTT Framework, integrating a 10k-persona benchmark (VPTT-Bench), a visual retrieval-augmented generator (VPRAG), and the VPTT Score, a text-only metric calibrated against human and VLM judgments. We show high correlation across human, VLM, and VPTT evaluations, validating the VPTT Score as a reliable perceptual proxy. Experiments demonstrate that VPRAG achieves the best alignment-originality balance, offering a scalable and privacy-safe foundation for personalized generative AI.
PDF22February 3, 2026