ChatPaper.aiChatPaper

基于科学家工作流对齐的大语言模型科学通用智能测评

Probing Scientific General Intelligence of LLMs with Scientist-Aligned Workflows

December 18, 2025
作者: Wanghan Xu, Yuhao Zhou, Yifan Zhou, Qinglong Cao, Shuo Li, Jia Bu, Bo Liu, Yixin Chen, Xuming He, Xiangyu Zhao, Xiang Zhuang, Fengxiang Wang, Zhiwang Zhou, Qiantai Feng, Wenxuan Huang, Jiaqi Wei, Hao Wu, Yuejin Yang, Guangshuai Wang, Sheng Xu, Ziyan Huang, Xinyao Liu, Jiyao Liu, Cheng Tang, Wei Li, Ying Chen, Junzhi Ning, Pengfei Jiang, Chenglong Ma, Ye Du, Changkai Ji, Huihui Xu, Ming Hu, Jiangbin Zheng, Xin Chen, Yucheng Wu, Feifei Jiang, Xi Chen, Xiangru Tang, Yuchen Fu, Yingzhou Lu, Yuanyuan Zhang, Lihao Sun, Chengbo Li, Jinzhe Ma, Wanhao Liu, Yating Liu, Kuo-Cheng Wu, Shengdu Chai, Yizhou Wang, Ouwen Zhangjin, Chen Tang, Shufei Zhang, Wenbo Cao, Junjie Ren, Taoyong Cui, Zhouheng Yao, Juntao Deng, Yijie Sun, Feng Liu, Wangxu Wei, Jingyi Xu, Zhangrui Li, Junchao Gong, Zijie Guo, Zhiyu Yao, Zaoyu Chen, Tianhao Peng, Fangchen Yu, Bo Zhang, Dongzhan Zhou, Shixiang Tang, Jiaheng Liu, Fenghua Ling, Yan Lu, Yuchen Ren, Ben Fei, Zhen Zhao, Xinyu Gu, Rui Su, Xiao-Ming Wu, Weikang Si, Yang Liu, Hao Chen, Xiangchao Yan, Xue Yang, Junchi Yan, Jiamin Wu, Qihao Zheng, Chenhui Li, Zhiqiang Gao, Hao Kong, Junjun He, Mao Su, Tianfan Fu, Peng Ye, Chunfeng Song, Nanqing Dong, Yuqiang Li, Huazhu Fu, Siqi Sun, Lijing Cheng, Jintai Lin, Wanli Ouyang, Bowen Zhou, Wenlong Zhang, Lei Bai
cs.AI

摘要

尽管科学人工智能取得了进展,但科学通用智能仍缺乏统一框架——这种能够自主构思、探索和跨领域推理的能力尚未形成体系。我们提出基于实践探究模型的操作性定义,并通过四个与科学家工作对齐的任务实现其操作化:深度研究、创意生成、干湿实验及实验推理。受《科学》杂志125个重大议题启发构建的SGI-Bench包含千余个专家精选的跨学科样本,可系统评估前沿大语言模型。研究揭示多重差距:深度研究虽具步骤匹配性但精确匹配率低;创意缺乏可行性与细节;干实验代码可执行性高但结果准确率低;湿实验流程序列保真度不足;多模态比较推理挑战持续存在。我们进一步提出测试时强化学习技术,通过在推理阶段优化检索增强的新颖性奖励,在无参考答案情况下提升假设创新性。基于实践探究模型的定义、以工作流为核心的基准测试及实证发现,共同为真正参与科学发现的人工智能系统奠定了基础。
English
Despite advances in scientific AI, a coherent framework for Scientific General Intelligence (SGI)-the ability to autonomously conceive, investigate, and reason across scientific domains-remains lacking. We present an operational SGI definition grounded in the Practical Inquiry Model (PIM: Deliberation, Conception, Action, Perception) and operationalize it via four scientist-aligned tasks: deep research, idea generation, dry/wet experiments, and experimental reasoning. SGI-Bench comprises over 1,000 expert-curated, cross-disciplinary samples inspired by Science's 125 Big Questions, enabling systematic evaluation of state-of-the-art LLMs. Results reveal gaps: low exact match (10--20%) in deep research despite step-level alignment; ideas lacking feasibility and detail; high code executability but low execution result accuracy in dry experiments; low sequence fidelity in wet protocols; and persistent multimodal comparative-reasoning challenges. We further introduce Test-Time Reinforcement Learning (TTRL), which optimizes retrieval-augmented novelty rewards at inference, enhancing hypothesis novelty without reference answer. Together, our PIM-grounded definition, workflow-centric benchmark, and empirical insights establish a foundation for AI systems that genuinely participate in scientific discovery.
PDF786December 23, 2025