ChatPaper.aiChatPaper

FLAG-Trader:融合LLM代理與基於梯度的強化學習的金融交易系統

FLAG-Trader: Fusion LLM-Agent with Gradient-based Reinforcement Learning for Financial Trading

February 17, 2025
作者: Guojun Xiong, Zhiyang Deng, Keyi Wang, Yupeng Cao, Haohang Li, Yangyang Yu, Xueqing Peng, Mingquan Lin, Kaleb E Smith, Xiao-Yang Liu, Jimin Huang, Sophia Ananiadou, Qianqian Xie
cs.AI

摘要

基於多模態金融數據微調的大型語言模型(LLMs)在各種金融任務中展現了令人印象深刻的推理能力。然而,在互動金融市場(如交易)中,面對多步驟、目標導向的場景時,這些模型往往表現不佳,這類場景需要複雜的代理方法來提升決策質量。為此,我們提出了FLAG-Trader,這是一個統一架構,將語言處理(通過LLMs)與基於梯度的強化學習(RL)策略優化相結合,其中部分微調的LLM作為策略網絡,既利用預訓練知識,又通過參數高效的微調適應金融領域。通過由交易獎勵驅動的策略梯度優化,我們的框架不僅提升了LLM在交易中的表現,還改善了其他金融領域任務的結果。我們提供了廣泛的實證證據來驗證這些改進。
English
Large language models (LLMs) fine-tuned on multimodal financial data have demonstrated impressive reasoning capabilities in various financial tasks. However, they often struggle with multi-step, goal-oriented scenarios in interactive financial markets, such as trading, where complex agentic approaches are required to improve decision-making. To address this, we propose FLAG-Trader, a unified architecture integrating linguistic processing (via LLMs) with gradient-driven reinforcement learning (RL) policy optimization, in which a partially fine-tuned LLM acts as the policy network, leveraging pre-trained knowledge while adapting to the financial domain through parameter-efficient fine-tuning. Through policy gradient optimization driven by trading rewards, our framework not only enhances LLM performance in trading but also improves results on other financial-domain tasks. We present extensive empirical evidence to validate these enhancements.

Summary

AI-Generated Summary

PDF362February 19, 2025