轉移模型:重新思考生成式學習目標
Transition Models: Rethinking the Generative Learning Objective
September 4, 2025
作者: Zidong Wang, Yiyuan Zhang, Xiaoyu Yue, Xiangyu Yue, Yangguang Li, Wanli Ouyang, Lei Bai
cs.AI
摘要
生成模型领域存在一个根本性的困境:迭代扩散模型能够实现卓越的保真度,但需付出巨大的计算成本,而高效的少步替代方案则受限于一个难以突破的质量上限。这种生成步骤与输出质量之间的冲突源于训练目标的局限性,这些目标要么专注于无限小的动态(PF-ODEs),要么直接预测端点。我们通过引入一个精确的连续时间动态方程来解决这一挑战,该方程解析地定义了跨越任何有限时间间隔的状态转移。这催生了一种新的生成范式——转移模型(Transition Models, TiM),它能够适应任意步长的转移,从单步跨越到多步的精细调整,无缝贯穿生成轨迹。尽管仅拥有8.65亿参数,TiM在所有评估步数下均实现了最先进的性能,超越了如SD3.5(80亿参数)和FLUX.1(120亿参数)等领先模型。重要的是,与以往的少步生成器不同,TiM在采样预算增加时展现出单调的质量提升。此外,采用我们的原生分辨率策略时,TiM在高达4096x4096的分辨率下提供了卓越的保真度。
English
A fundamental dilemma in generative modeling persists: iterative diffusion
models achieve outstanding fidelity, but at a significant computational cost,
while efficient few-step alternatives are constrained by a hard quality
ceiling. This conflict between generation steps and output quality arises from
restrictive training objectives that focus exclusively on either infinitesimal
dynamics (PF-ODEs) or direct endpoint prediction. We address this challenge by
introducing an exact, continuous-time dynamics equation that analytically
defines state transitions across any finite time interval. This leads to a
novel generative paradigm, Transition Models (TiM), which adapt to
arbitrary-step transitions, seamlessly traversing the generative trajectory
from single leaps to fine-grained refinement with more steps. Despite having
only 865M parameters, TiM achieves state-of-the-art performance, surpassing
leading models such as SD3.5 (8B parameters) and FLUX.1 (12B parameters) across
all evaluated step counts. Importantly, unlike previous few-step generators,
TiM demonstrates monotonic quality improvement as the sampling budget
increases. Additionally, when employing our native-resolution strategy, TiM
delivers exceptional fidelity at resolutions up to 4096x4096.