ChatPaper.aiChatPaper

Goedel-Prover-V2:通过支架式数据合成与自我校正扩展形式定理证明

Goedel-Prover-V2: Scaling Formal Theorem Proving with Scaffolded Data Synthesis and Self-Correction

August 5, 2025
作者: Yong Lin, Shange Tang, Bohan Lyu, Ziran Yang, Jui-Hui Chung, Haoyu Zhao, Lai Jiang, Yihan Geng, Jiawei Ge, Jingruo Sun, Jiayun Wu, Jiri Gesi, Ximing Lu, David Acuna, Kaiyu Yang, Hongzhou Lin, Yejin Choi, Danqi Chen, Sanjeev Arora, Chi Jin
cs.AI

摘要

我们推出了Goedel-Prover-V2,这是一系列在自动定理证明领域树立新标杆的开源语言模型。基于标准的专家迭代与强化学习流程,我们的方法融合了三大创新点:(1)阶梯式数据合成:通过生成难度递增的合成任务,训练模型逐步掌握更为复杂的定理;(2)验证器引导的自我修正:借助Lean编译器的反馈,使模型能够迭代修正其证明;(3)模型平均:合并模型检查点,以缓解训练后期模型输出多样性的下降。我们的轻量级模型Goedel-Prover-V2-8B,在MiniF2F测试中达到了84.6%的pass@32成绩,尽管体积仅为DeepSeek-Prover-V2-671B的1/80,却在该指标上超越了后者。旗舰模型Goedel-Prover-V2-32B,在标准模式下于MiniF2F测试中取得88.1%的pass@32成绩,在自我修正模式下更是达到90.4%,大幅领先于先前的最优水平。此外,该旗舰模型在PutnamBench上以pass@184解决了86道题目,在开源模型排行榜上位居首位,超越了DeepSeek-Prover-V2-671B以pass@1024解决47道题目的记录,且模型规模与计算预算显著更小。截至发布之时(2025年7月至8月),Goedel-Prover-V2在所有开源定理证明器中展现了最强的综合性能。在受限的测试计算预算下,它亦跻身于包括公开报告性能的闭源系统在内的顶尖模型之列。我们的模型、代码及数据已发布于https://github.com/Goedel-LM/Goedel-Prover-V2。
English
We introduce Goedel-Prover-V2, a series of open-source language models that set a new state-of-the-art in automated theorem proving. Built on the standard expert iteration and reinforcement learning pipeline, our approach incorporates three key innovations: (1) Scaffolded data synthesis: We generate synthetic tasks of increasing difficulty to train the model to master increasingly complex theorems; (2) Verifier-guided self-correction: We enable the model to iteratively revise its proofs by leveraging feedback from the Lean compiler; (3) Model averaging: We merge model checkpoints to mitigate the decrease in model output diversity in later stages of training. Our small model, Goedel-Prover-V2-8B, reaches 84.6% pass@32 on MiniF2F and outperforms DeepSeek-Prover-V2-671B under the same metric, despite being 80X smaller. Our flagship model, Goedel-Prover-V2-32B, achieves 88.1% on MiniF2F at pass@32 in standard mode and 90.4% in self-correction mode, outperforming prior SOTA by a large margin. Additionally, our flagship model solves 86 problems on PutnamBench at pass@184, securing the first place among open-source models on the leaderboard, surpassing DeepSeek-Prover-V2-671B's record of solving 47 problems by pass@1024 with a significantly smaller model size and compute budget. At the time of its release (July-August 2025), Goedel-Prover-V2 achieves the strongest overall performance among all open-source theorem provers. It also ranks among the top-performing models--including closed-source systems with publicly reported performance--under a constrained test-time compute budget. Our models, code, and data are released at https://github.com/Goedel-LM/Goedel-Prover-V2.
PDF103August 6, 2025