Agent S:一個開放的代理框架,讓電腦像人類一樣運作。
Agent S: An Open Agentic Framework that Uses Computers Like a Human
October 10, 2024
作者: Saaket Agashe, Jiuzhou Han, Shuyu Gan, Jiachen Yang, Ang Li, Xin Eric Wang
cs.AI
摘要
我們提出了Agent S,一個開放的代理框架,通過圖形用戶界面(GUI)實現與計算機的自主交互,旨在通過自動執行複雜的多步任務來改變人機交互。Agent S的目標是應對自動執行計算機任務中的三個關鍵挑戰:獲取特定領域知識、規劃長期任務視野以及處理動態、非統一界面。為此,Agent S引入了經驗增強的階層規劃,通過在多個層次上從外部知識搜索和內部經驗檢索中學習,促進有效的任務規劃和子任務執行。此外,它利用一個代理-計算機界面(ACI)來更好地引出基於多模式大型語言模型(MLLMs)的GUI代理的推理和控制能力。在OSWorld基準測試中的評估顯示,Agent S在成功率上優於基準線9.37%(相對改進了83.6%),並實現了新的最先進技術。全面分析突出了各個組件的有效性,並為未來改進提供了見解。此外,Agent S在新發布的WindowsAgentArena基準測試中展示了對不同操作系統的廣泛泛化能力。代碼可在https://github.com/simular-ai/Agent-S找到。
English
We present Agent S, an open agentic framework that enables autonomous
interaction with computers through a Graphical User Interface (GUI), aimed at
transforming human-computer interaction by automating complex, multi-step
tasks. Agent S aims to address three key challenges in automating computer
tasks: acquiring domain-specific knowledge, planning over long task horizons,
and handling dynamic, non-uniform interfaces. To this end, Agent S introduces
experience-augmented hierarchical planning, which learns from external
knowledge search and internal experience retrieval at multiple levels,
facilitating efficient task planning and subtask execution. In addition, it
employs an Agent-Computer Interface (ACI) to better elicit the reasoning and
control capabilities of GUI agents based on Multimodal Large Language Models
(MLLMs). Evaluation on the OSWorld benchmark shows that Agent S outperforms the
baseline by 9.37% on success rate (an 83.6% relative improvement) and achieves
a new state-of-the-art. Comprehensive analysis highlights the effectiveness of
individual components and provides insights for future improvements.
Furthermore, Agent S demonstrates broad generalizability to different operating
systems on a newly-released WindowsAgentArena benchmark. Code available at
https://github.com/simular-ai/Agent-S.Summary
AI-Generated Summary