條件語言政策:用於可控多目標微調的通用框架
Conditioned Language Policy: A General Framework for Steerable Multi-Objective Finetuning
July 22, 2024
作者: Kaiwen Wang, Rahul Kidambi, Ryan Sullivan, Alekh Agarwal, Christoph Dann, Andrea Michi, Marco Gelmi, Yunxuan Li, Raghav Gupta, Avinava Dubey, Alexandre Ramé, Johan Ferret, Geoffrey Cideron, Le Hou, Hongkun Yu, Amr Ahmed, Aranyak Mehta, Léonard Hussenot, Olivier Bachem, Edouard Leurent
cs.AI
摘要
基於獎勵的微調對於將語言策略與預期行為(例如創造力和安全性)保持一致至關重要。在這裡的一個關鍵挑戰是開發可調整的語言模型,以靈活高效地平衡多個(衝突的)目標。本文提出了條件語言策略(CLP),這是一個通用框架,用於在多個目標上微調語言模型。基於多任務訓練和參數高效微調的技術,CLP 可以學習到在推論時有效平衡衝突目標的可調整模型。值得注意的是,這不需要訓練或維護多個模型以實現不同目標之間的平衡。通過大量的實驗和消融,我們展示了 CLP 框架學習到的可調整模型勝過並 Pareto 優於當前多目標微調的最新方法。
English
Reward-based finetuning is crucial for aligning language policies with
intended behaviors (e.g., creativity and safety). A key challenge here is to
develop steerable language models that trade-off multiple (conflicting)
objectives in a flexible and efficient manner. This paper presents Conditioned
Language Policy (CLP), a general framework for finetuning language models on
multiple objectives. Building on techniques from multi-task training and
parameter-efficient finetuning, CLP can learn steerable models that effectively
trade-off conflicting objectives at inference time. Notably, this does not
require training or maintaining multiple models to achieve different trade-offs
between the objectives. Through an extensive set of experiments and ablations,
we show that the CLP framework learns steerable models that outperform and
Pareto-dominate the current state-of-the-art approaches for multi-objective
finetuning.Summary
AI-Generated Summary