LLMs在翻譯中迷失:M-ALERT揭示跨語言安全漏洞
LLMs Lost in Translation: M-ALERT uncovers Cross-Linguistic Safety Gaps
December 19, 2024
作者: Felix Friedrich, Simone Tedeschi, Patrick Schramowski, Manuel Brack, Roberto Navigli, Huu Nguyen, Bo Li, Kristian Kersting
cs.AI
摘要
在跨多種語言建立安全的大型語言模型(LLMs)對確保安全訪問和語言多樣性至關重要。為此,我們引入了M-ALERT,這是一個多語言基準,用於評估五種語言(英語、法語、德語、意大利語和西班牙語)中LLMs的安全性。M-ALERT每種語言包含15,000個高質量提示,總計75,000個,遵循詳細的ALERT分類法。我們對10種最先進的LLMs進行了廣泛實驗,突顯了語言特定安全性分析的重要性,揭示了模型在不同語言和類別中經常表現出顯著的安全性不一致性。例如,Llama3.2在意大利語的crime_tax類別中表現出高度的不安全性,但在其他語言中保持安全。在所有模型中都可以觀察到類似的差異。相反,某些類別,如substance_cannabis和crime_propaganda,在所有模型和語言中一致地觸發不安全的回應。這些發現強調了在LLMs中確保安全和負責任的使用跨多樣化用戶社群的需求。
English
Building safe Large Language Models (LLMs) across multiple languages is
essential in ensuring both safe access and linguistic diversity. To this end,
we introduce M-ALERT, a multilingual benchmark that evaluates the safety of
LLMs in five languages: English, French, German, Italian, and Spanish. M-ALERT
includes 15k high-quality prompts per language, totaling 75k, following the
detailed ALERT taxonomy. Our extensive experiments on 10 state-of-the-art LLMs
highlight the importance of language-specific safety analysis, revealing that
models often exhibit significant inconsistencies in safety across languages and
categories. For instance, Llama3.2 shows high unsafety in the category
crime_tax for Italian but remains safe in other languages. Similar differences
can be observed across all models. In contrast, certain categories, such as
substance_cannabis and crime_propaganda, consistently trigger unsafe responses
across models and languages. These findings underscore the need for robust
multilingual safety practices in LLMs to ensure safe and responsible usage
across diverse user communities.