ObfusQAte:一個評估LLM在混淆事實問答中魯棒性的框架提案
ObfusQAte: A Proposed Framework to Evaluate LLM Robustness on Obfuscated Factual Question Answering
August 10, 2025
作者: Shubhra Ghosh, Abhilekh Borah, Aditya Kumar Guru, Kripabandhu Ghosh
cs.AI
摘要
大型語言模型(LLMs)的迅速普及,極大地促進了能夠進行事實問答(QA)的公平AI系統的發展。然而,目前尚無已知研究測試LLMs在面對模糊化問題時的穩健性。為系統性地評估這些限制,我們提出了一種新技術——ObfusQAte,並基於此引入了ObfusQA,這是一個首創的、全面的框架,具有多層次的模糊化級別,旨在從三個不同維度檢驗LLM的能力:(i)命名實體間接性,(ii)干擾項間接性,以及(iii)上下文過載。通過捕捉語言中的這些細微差別,ObfusQA為評估LLM的穩健性和適應性提供了一個全面的基準。我們的研究發現,當面對這些日益細膩的變體時,LLMs往往會失敗或產生虛構的回應。為推動這一方向的研究,我們將ObfusQAte公開提供。
English
The rapid proliferation of Large Language Models (LLMs) has significantly
contributed to the development of equitable AI systems capable of factual
question-answering (QA). However, no known study tests the LLMs' robustness
when presented with obfuscated versions of questions. To systematically
evaluate these limitations, we propose a novel technique, ObfusQAte and,
leveraging the same, introduce ObfusQA, a comprehensive, first of its kind,
framework with multi-tiered obfuscation levels designed to examine LLM
capabilities across three distinct dimensions: (i) Named-Entity Indirection,
(ii) Distractor Indirection, and (iii) Contextual Overload. By capturing these
fine-grained distinctions in language, ObfusQA provides a comprehensive
benchmark for evaluating LLM robustness and adaptability. Our study observes
that LLMs exhibit a tendency to fail or generate hallucinated responses when
confronted with these increasingly nuanced variations. To foster research in
this direction, we make ObfusQAte publicly available.