通過遞歸潛在空間推理解鎖Transformer模型中的分佈外泛化能力
Unlocking Out-of-Distribution Generalization in Transformers via Recursive Latent Space Reasoning
October 15, 2025
作者: Awni Altabaa, Siyu Chen, John Lafferty, Zhuoran Yang
cs.AI
摘要
系统性的、超越训练分布的组合泛化能力,依然是机器学习领域的一个核心挑战——同时也是现代语言模型推理能力发展的关键瓶颈。本研究以GSM8K风格的模块化算术计算图任务为测试平台,探讨了Transformer网络在分布外(OOD)泛化上的表现。我们提出并探索了四种旨在增强OOD泛化的架构机制:(i)输入自适应递归;(ii)算法监督;(iii)通过离散瓶颈实现的锚定潜在表示;以及(iv)显式错误纠正机制。这些机制共同构成了一种架构方法,使得Transformer网络能够进行原生且可扩展的潜在空间推理,并具备强大的算法泛化能力。我们通过详细的机制可解释性分析,补充了这些实证结果,揭示了这些机制如何促成稳健的OOD泛化能力。
English
Systematic, compositional generalization beyond the training distribution
remains a core challenge in machine learning -- and a critical bottleneck for
the emergent reasoning abilities of modern language models. This work
investigates out-of-distribution (OOD) generalization in Transformer networks
using a GSM8K-style modular arithmetic on computational graphs task as a
testbed. We introduce and explore a set of four architectural mechanisms aimed
at enhancing OOD generalization: (i) input-adaptive recurrence; (ii)
algorithmic supervision; (iii) anchored latent representations via a discrete
bottleneck; and (iv) an explicit error-correction mechanism. Collectively,
these mechanisms yield an architectural approach for native and scalable latent
space reasoning in Transformer networks with robust algorithmic generalization
capabilities. We complement these empirical results with a detailed mechanistic
interpretability analysis that reveals how these mechanisms give rise to robust
OOD generalization abilities.