PACEvolve:实现长程进度感知一致性演进的框架
PACEvolve: Enabling Long-Horizon Progress-Aware Consistent Evolution
January 15, 2026
作者: Minghao Yan, Bo Peng, Benjamin Coleman, Ziqi Chen, Zhouhang Xie, Zhankui He, Noveen Sachdeva, Isabella Ye, Weili Wang, Chi Wang, Ed H. Chi, Wang-Cheng Kang, Derek Zhiyuan Cheng, Beidou Wang
cs.AI
摘要
大型语言模型(LLMs)已成为进化搜索的强大执行者,但高效搜索框架的设计仍处于零散状态。尽管现有LLM参与循环的系统展现出潜力,却缺乏管理进化过程的系统性方法。我们识别出三种典型失效模式:语境污染(实验历史偏差影响后续候选生成)、模式坍塌(智能体因探索-利用失衡陷入局部最优)、以及弱协作(僵化的交叉策略无法有效利用并行搜索轨迹)。为此,我们提出进展感知一致进化框架(PACEvolve),通过稳健管控智能体的语境与搜索动态来解决这些挑战。该框架融合层级化语境管理(HCM)与剪枝策略应对语境污染;采用动量回溯(MBB)机制逃离局部最优;并通过自适应采样策略统一回溯与交叉操作,实现动态搜索协调(CE),使智能体能平衡内部优化与跨轨迹协作。实验表明,PACEvolve为持续长程自我改进提供了系统化路径,在LLM-SR和KernelBench基准上达到顶尖水平,并在Modded NanoGPT任务上发现了超越现有记录的解决方案。
English
Large Language Models (LLMs) have emerged as powerful operators for evolutionary search, yet the design of efficient search scaffolds remains ad hoc. While promising, current LLM-in-the-loop systems lack a systematic approach to managing the evolutionary process. We identify three distinct failure modes: Context Pollution, where experiment history biases future candidate generation; Mode Collapse, where agents stagnate in local minima due to poor exploration-exploitation balance; and Weak Collaboration, where rigid crossover strategies fail to leverage parallel search trajectories effectively. We introduce Progress-Aware Consistent Evolution (PACEvolve), a framework designed to robustly govern the agent's context and search dynamics, to address these challenges. PACEvolve combines hierarchical context management (HCM) with pruning to address context pollution; momentum-based backtracking (MBB) to escape local minima; and a self-adaptive sampling policy that unifies backtracking and crossover for dynamic search coordination (CE), allowing agents to balance internal refinement with cross-trajectory collaboration. We demonstrate that PACEvolve provides a systematic path to consistent, long-horizon self-improvement, achieving state-of-the-art results on LLM-SR and KernelBench, while discovering solutions surpassing the record on Modded NanoGPT.