RLCD:從對比蒸餾中進行強化學習,用於語言模型對齊
RLCD: Reinforcement Learning from Contrast Distillation for Language Model Alignment
July 24, 2023
作者: Kevin Yang, Dan Klein, Asli Celikyilmaz, Nanyun Peng, Yuandong Tian
cs.AI
摘要
我們提出了對比蒸餾強化學習(RLCD)方法,用於使語言模型遵循自然語言原則,而無需使用人類反饋。RLCD通過使用對比的正面和負面提示生成的模擬偏好對來訓練偏好模型,這些對包含高質量和低質量示例。然後使用偏好模型通過強化學習來改進基礎未對齊的語言模型。從實證上看,RLCD在三個不同的對齊任務(無害性、幫助性和故事大綱生成)以及偏好數據模擬的7B和30B模型規模上均優於RLAIF(Bai等人,2022b)和上下文蒸餾(Huang等人,2022)基準。
English
We propose Reinforcement Learning from Contrast Distillation (RLCD), a method
for aligning language models to follow natural language principles without
using human feedback. RLCD trains a preference model using simulated preference
pairs that contain both a high-quality and low-quality example, generated using
contrasting positive and negative prompts. The preference model is then used to
improve a base unaligned language model via reinforcement learning.
Empirically, RLCD outperforms RLAIF (Bai et al., 2022b) and context
distillation (Huang et al., 2022) baselines across three diverse alignment
tasks--harmlessness, helpfulness, and story outline generation--and on both 7B
and 30B model scales for preference data simulation.