ChatPaper.aiChatPaper

AutoTrain:無代碼訓練最先進模型

AutoTrain: No-code training for state-of-the-art models

October 21, 2024
作者: Abhishek Thakur
cs.AI

摘要

隨著開源模型的進步,對自定義數據集進行模型訓練(或微調)已成為開發針對特定工業或開源應用的解決方案的重要部分。然而,目前尚無一個工具能簡化跨不同類型模態或任務的訓練過程。我們介紹 AutoTrain(又稱 AutoTrain Advanced)-- 一個開源的、無代碼工具/庫,可用於訓練(或微調)不同類型任務的模型,包括:大型語言模型(LLM)微調、文本分類/回歸、標記分類、序列到序列任務、句子轉換器微調、視覺語言模型(VLM)微調、圖像分類/回歸,甚至在表格數據上進行分類和回歸任務。AutoTrain Advanced 是一個提供在自定義數據集上訓練模型的最佳實踐的開源庫。該庫可在 https://github.com/huggingface/autotrain-advanced 上找到。AutoTrain 可以在完全本地模式或雲端機器上使用,並與 Hugging Face Hub 上共享的數以萬計的模型及其變體一起使用。
English
With the advancements in open-source models, training (or finetuning) models on custom datasets has become a crucial part of developing solutions which are tailored to specific industrial or open-source applications. Yet, there is no single tool which simplifies the process of training across different types of modalities or tasks. We introduce AutoTrain (aka AutoTrain Advanced) -- an open-source, no code tool/library which can be used to train (or finetune) models for different kinds of tasks such as: large language model (LLM) finetuning, text classification/regression, token classification, sequence-to-sequence task, finetuning of sentence transformers, visual language model (VLM) finetuning, image classification/regression and even classification and regression tasks on tabular data. AutoTrain Advanced is an open-source library providing best practices for training models on custom datasets. The library is available at https://github.com/huggingface/autotrain-advanced. AutoTrain can be used in fully local mode or on cloud machines and works with tens of thousands of models shared on Hugging Face Hub and their variations.
PDF602November 16, 2024