信任與準確性的故事:在RAG系統中的基礎對比指導LLMs
A Tale of Trust and Accuracy: Base vs. Instruct LLMs in RAG Systems
June 21, 2024
作者: Florin Cuconasu, Giovanni Trappolini, Nicola Tonellotto, Fabrizio Silvestri
cs.AI
摘要
檢索增強生成(RAG)代表著人工智慧領域的一項重大進步,結合了檢索階段和生成階段,後者通常由大型語言模型(LLMs)提供動力。目前在RAG中的常見做法包括使用「指導」LLMs,這些模型經過監督訓練進行微調,以增強其遵循指示的能力,並使用最先進的技術與人類偏好保持一致。與普遍觀念相反,我們的研究表明,在我們的實驗設置下,基本模型在RAG任務中平均表現比其指導對應物高出20%。這一發現挑戰了人們對於RAG應用中指導LLMs優越性的普遍假設。進一步的研究揭示了一個更加微妙的情況,質疑了RAG的基本方面,並提出了對該主題進行更廣泛討論的必要性;或者,如弗洛姆所言,“很少有人僅僅透過一瞥統計數據就能理解數字的含義”。
English
Retrieval Augmented Generation (RAG) represents a significant advancement in
artificial intelligence combining a retrieval phase with a generative phase,
with the latter typically being powered by large language models (LLMs). The
current common practices in RAG involve using "instructed" LLMs, which are
fine-tuned with supervised training to enhance their ability to follow
instructions and are aligned with human preferences using state-of-the-art
techniques. Contrary to popular belief, our study demonstrates that base models
outperform their instructed counterparts in RAG tasks by 20% on average under
our experimental settings. This finding challenges the prevailing assumptions
about the superiority of instructed LLMs in RAG applications. Further
investigations reveal a more nuanced situation, questioning fundamental aspects
of RAG and suggesting the need for broader discussions on the topic; or, as
Fromm would have it, "Seldom is a glance at the statistics enough to understand
the meaning of the figures".Summary
AI-Generated Summary