超越U:讓擴散模型更快速輕巧
Beyond U: Making Diffusion Models Faster & Lighter
October 31, 2023
作者: Sergio Calvo-Ordonez, Jiahao Huang, Lipei Zhang, Guang Yang, Carola-Bibiane Schonlieb, Angelica I Aviles-Rivero
cs.AI
摘要
擴散模型是一類生成模型,能在圖像合成、視頻生成和分子設計等任務中取得突破性表現。儘管具有強大功能,但其效率,特別是在反去噪過程中,由於收斂速度緩慢和計算成本高而面臨挑戰。在這項工作中,我們提出了一種利用連續動態系統來設計新型去噪網絡的方法,以改進擴散模型,使其更節省參數、收斂速度更快,並表現出更高的噪聲韌性。通過對去噪概率擴散模型進行實驗,我們的框架使用的參數量約為標準去噪擴散概率模型(DDPMs)中U-Net的四分之一,浮點運算(FLOPs)的30%。此外,我們的模型在相同條件下的推理速度比基準模型快70%,同時收斂到更優質的解決方案。
English
Diffusion models are a family of generative models that yield record-breaking
performance in tasks such as image synthesis, video generation, and molecule
design. Despite their capabilities, their efficiency, especially in the reverse
denoising process, remains a challenge due to slow convergence rates and high
computational costs. In this work, we introduce an approach that leverages
continuous dynamical systems to design a novel denoising network for diffusion
models that is more parameter-efficient, exhibits faster convergence, and
demonstrates increased noise robustness. Experimenting with denoising
probabilistic diffusion models, our framework operates with approximately a
quarter of the parameters and 30% of the Floating Point Operations (FLOPs)
compared to standard U-Nets in Denoising Diffusion Probabilistic Models
(DDPMs). Furthermore, our model is up to 70% faster in inference than the
baseline models when measured in equal conditions while converging to better
quality solutions.