多頭專家混合模型
Multi-Head Mixture-of-Experts
April 23, 2024
作者: Xun Wu, Shaohan Huang, Wenhui Wang, Furu Wei
cs.AI
摘要
稀疏專家混合(SMoE)可擴展模型容量,而不會顯著增加訓練和推理成本,但存在以下兩個問題:(1)低專家激活,只有少量專家被激活進行優化。(2)缺乏對個別標記內多個語義概念的細粒度分析能力。我們提出了多頭專家混合(MH-MoE),採用多頭機制將每個標記分成多個子標記。這些子標記然後被分配並且並行地由多個不同的專家處理,然後無縫地重新整合回原始標記形式。多頭機制使模型能夠集體關注來自不同專家內各種表示空間的信息,同時顯著增強專家激活,從而加深上下文理解並減輕過度擬合。此外,我們的MH-MoE實施簡單,並與其他SMoE優化方法解耦,易於與其他SMoE模型集成以提高性能。在三個任務上進行的大量實驗結果:以英語為焦點的語言建模、多語言語言建模和遮罩多模態建模任務,展示了MH-MoE的有效性。
English
Sparse Mixtures of Experts (SMoE) scales model capacity without significant
increases in training and inference costs, but exhibits the following two
issues: (1) Low expert activation, where only a small subset of experts are
activated for optimization. (2) Lacking fine-grained analytical capabilities
for multiple semantic concepts within individual tokens. We propose Multi-Head
Mixture-of-Experts (MH-MoE), which employs a multi-head mechanism to split each
token into multiple sub-tokens. These sub-tokens are then assigned to and
processed by a diverse set of experts in parallel, and seamlessly reintegrated
into the original token form. The multi-head mechanism enables the model to
collectively attend to information from various representation spaces within
different experts, while significantly enhances expert activation, thus deepens
context understanding and alleviate overfitting. Moreover, our MH-MoE is
straightforward to implement and decouples from other SMoE optimization
methods, making it easy to integrate with other SMoE models for enhanced
performance. Extensive experimental results across three tasks: English-focused
language modeling, Multi-lingual language modeling and Masked multi-modality
modeling tasks, demonstrate the effectiveness of MH-MoE.Summary
AI-Generated Summary