ChatPaper.aiChatPaper

RE-TRAC:面向深度搜索代理的递归轨迹压缩技术

RE-TRAC: REcursive TRAjectory Compression for Deep Search Agents

February 2, 2026
作者: Jialiang Zhu, Gongrui Zhang, Xiaolong Ma, Lin Xu, Miaosen Zhang, Ruiqi Yang, Song Wang, Kai Qiu, Zhirong Wu, Qi Dai, Ruichun Ma, Bei Liu, Yifan Yang, Chong Luo, Zhengyuan Yang, Linjie Li, Lijuan Wang, Weizhu Chen, Xin Geng, Baining Guo
cs.AI

摘要

基于大语言模型的深度研究智能体主要建立在ReAct框架之上。这种线性设计难以回溯早期状态、分支到替代搜索方向或在长上下文下保持全局认知,常导致局部最优、冗余探索和低效搜索。我们提出Re-TRAC框架,该智能体通过在每个轨迹后生成结构化状态表示(用于总结证据、不确定性、失败案例和未来计划),并基于此状态表示调整后续轨迹,实现跨轨迹探索。这种设计支持迭代反思与全局知情规划,将研究重构为渐进式过程。实验结果表明,在BrowseComp基准上,Re-TRAC使用前沿大语言模型时持续领先ReAct框架15-20%。针对小规模模型,我们引入Re-TRAC感知的监督微调方法,在同等规模下实现了最先进的性能。值得注意的是,Re-TRAC在多轮搜索中呈现出工具调用次数和令牌用量的单调递减,表明其通过跨轨迹反思驱动渐进式目标探索,而非冗余搜索。
English
LLM-based deep research agents are largely built on the ReAct framework. This linear design makes it difficult to revisit earlier states, branch into alternative search directions, or maintain global awareness under long contexts, often leading to local optima, redundant exploration, and inefficient search. We propose Re-TRAC, an agentic framework that performs cross-trajectory exploration by generating a structured state representation after each trajectory to summarize evidence, uncertainties, failures, and future plans, and conditioning subsequent trajectories on this state representation. This enables iterative reflection and globally informed planning, reframing research as a progressive process. Empirical results show that Re-TRAC consistently outperforms ReAct by 15-20% on BrowseComp with frontier LLMs. For smaller models, we introduce Re-TRAC-aware supervised fine-tuning, achieving state-of-the-art performance at comparable scales. Notably, Re-TRAC shows a monotonic reduction in tool calls and token usage across rounds, indicating progressively targeted exploration driven by cross-trajectory reflection rather than redundant search.
PDF161February 7, 2026