SwarmSys:面向可擴展與自適應推理的分散式群體啟發代理系統
SwarmSys: Decentralized Swarm-Inspired Agents for Scalable and Adaptive Reasoning
October 11, 2025
作者: Ruohao Li, Hongjun Liu, Leyi Zhao, Zisu Li, Jiawei Li, Jiajun Jiang, Linning Xu, Chen Zhao, Mingming Fan, Chen Liang
cs.AI
摘要
大型语言模型(LLM)代理已展现出卓越的推理能力。然而,现有的多代理框架往往依赖于固定角色或集中控制,限制了在长期推理中的可扩展性和适应性。我们引入了SwarmSys,一个受群体智能启发的分布式多代理推理闭环框架。在SwarmSys中,协调通过三个专门角色——探索者、工作者和验证者——之间的迭代互动自然涌现,这些角色持续循环于探索、利用和验证之中。为了实现可扩展且自适应的协作,我们整合了自适应代理与事件档案、基于嵌入的概率匹配以及一种受信息素启发的强化机制,支持动态任务分配与无需全局监督的自组织收敛。在符号推理、研究综合及科学编程任务中,SwarmSys均优于基线模型,提升了准确性与推理稳定性。这些发现表明,群体启发的协调作为一种可扩展、鲁棒且自适应的多代理推理范式具有广阔前景,暗示着协调扩展可能成为推动LLM智能发展的另一重要途径,与模型扩展并驾齐驱。
English
Large language model (LLM) agents have shown remarkable reasoning abilities.
However, existing multi-agent frameworks often rely on fixed roles or
centralized control, limiting scalability and adaptability in long-horizon
reasoning. We introduce SwarmSys, a closed-loop framework for distributed
multi-agent reasoning inspired by swarm intelligence. Coordination in SwarmSys
emerges through iterative interactions among three specialized roles,
Explorers, Workers, and Validators, that continuously cycle through
exploration, exploitation, and validation. To enable scalable and adaptive
collaboration, we integrate adaptive agent and event profiles, embedding-based
probabilistic matching, and a pheromone-inspired reinforcement mechanism,
supporting dynamic task allocation and self-organizing convergence without
global supervision. Across symbolic reasoning, research synthesis, and
scientific programming tasks, SwarmSys consistently outperforms baselines,
improving both accuracy and reasoning stability. These findings highlight
swarm-inspired coordination as a promising paradigm for scalable, robust, and
adaptive multi-agent reasoning, suggesting that coordination scaling may rival
model scaling in advancing LLM intelligence.