ChatPaper.aiChatPaper

NitroGen:面向通用遊戲代理的開放基礎模型

NitroGen: An Open Foundation Model for Generalist Gaming Agents

January 4, 2026
作者: Loïc Magne, Anas Awadalla, Guanzhi Wang, Yinzhen Xu, Joshua Belofsky, Fengyuan Hu, Joohwan Kim, Ludwig Schmidt, Georgia Gkioxari, Jan Kautz, Yisong Yue, Yejin Choi, Yuke Zhu, Linxi "Jim" Fan
cs.AI

摘要

我們推出NitroGen——這款專為通用遊戲智能體設計的視覺行動基礎模型,其訓練數據涵蓋逾千款遊戲、總計四萬小時的遊戲影片。該模型融合三大核心要素:1)透過自動化擷取公開遊戲影片中的玩家操作,建構出網路級規模的影片行動數據集;2)具備跨遊戲泛化能力評估功能的多遊戲基準環境;3)採用大規模行為克隆訓練的統一視覺行動模型。NitroGen在多元遊戲場景中展現卓越能力,包括3D動作遊戲的戰鬥遭遇、2D平台遊戲的高精度操控,以及程序生成世界的探索任務。該模型能有效遷移至未見過的遊戲,相較於從零開始訓練的模型,任務成功率最高可提升52%。我們公開數據集、評估套件與模型權重,以推動通用具身智能體的研究進展。
English
We introduce NitroGen, a vision-action foundation model for generalist gaming agents that is trained on 40,000 hours of gameplay videos across more than 1,000 games. We incorporate three key ingredients: 1) an internet-scale video-action dataset constructed by automatically extracting player actions from publicly available gameplay videos, 2) a multi-game benchmark environment that can measure cross-game generalization, and 3) a unified vision-action model trained with large-scale behavior cloning. NitroGen exhibits strong competence across diverse domains, including combat encounters in 3D action games, high-precision control in 2D platformers, and exploration in procedurally generated worlds. It transfers effectively to unseen games, achieving up to 52% relative improvement in task success rates over models trained from scratch. We release the dataset, evaluation suite, and model weights to advance research on generalist embodied agents.
PDF221January 8, 2026