風格重組:透過風格元素的提煉和擾動實現可解釋的作者身份混淆
StyleRemix: Interpretable Authorship Obfuscation via Distillation and Perturbation of Style Elements
August 28, 2024
作者: Jillian Fisher, Skyler Hallinan, Ximing Lu, Mitchell Gordon, Zaid Harchaoui, Yejin Choi
cs.AI
摘要
作者身份混淆是一項重要但具有挑戰性的任務,指的是將文本重新編寫,以故意掩蓋作者的身份。目前使用大型語言模型(LLMs)的方法缺乏可解釋性和可控性,通常忽略特定作者的風格特徵,導致整體性能較差。
為了應對這一問題,我們開發了StyleRemix,這是一種適應性和可解釋性的混淆方法,它會干擾原始輸入文本的特定、細粒度的風格元素。StyleRemix 使用預先訓練的低秩適應(LoRA)模塊來重新編寫輸入文本,沿著各種風格軸(例如正式性和長度)進行調整,同時保持低計算成本。在自動和人工評估中,StyleRemix 在各種領域中均優於最先進的基準和更大的LLMs。
此外,我們還發布了AuthorMix,這是一個包含30,000篇高質量長文本的大型數據集,來自14位作者和4個領域,以及DiSC,這是一個包含1,500篇文本的平行語料庫,涵蓋了16個獨特方向上的七個風格軸。
English
Authorship obfuscation, rewriting a text to intentionally obscure the
identity of the author, is an important but challenging task. Current methods
using large language models (LLMs) lack interpretability and controllability,
often ignoring author-specific stylistic features, resulting in less robust
performance overall.
To address this, we develop StyleRemix, an adaptive and interpretable
obfuscation method that perturbs specific, fine-grained style elements of the
original input text. StyleRemix uses pre-trained Low Rank Adaptation (LoRA)
modules to rewrite an input specifically along various stylistic axes (e.g.,
formality and length) while maintaining low computational cost. StyleRemix
outperforms state-of-the-art baselines and much larger LLMs in a variety of
domains as assessed by both automatic and human evaluation.
Additionally, we release AuthorMix, a large set of 30K high-quality,
long-form texts from a diverse set of 14 authors and 4 domains, and DiSC, a
parallel corpus of 1,500 texts spanning seven style axes in 16 unique
directions