Phantom:通過跨模態對齊實現主體一致性的影片生成
Phantom: Subject-consistent video generation via cross-modal alignment
February 16, 2025
作者: Lijie Liu, Tianxiang Ma, Bingchuan Li, Zhuowei Chen, Jiawei Liu, Qian He, Xinglong Wu
cs.AI
摘要
隨著視頻生成基礎模型的持續發展,其應用領域正不斷拓展,而主體一致的視頻生成仍處於探索階段。我們將此稱為「主體到視頻」(Subject-to-Video),即從參考圖像中提取主體元素,並通過文本指令生成與主體一致的視頻。我們認為,主體到視頻的核心在於平衡文本與圖像的雙模態提示,從而深度且同步地對齊文本與視覺內容。為此,我們提出了Phantom,一個適用於單一及多主體參考的統一視頻生成框架。基於現有的文本到視頻和圖像到視頻架構,我們重新設計了聯合文本-圖像注入模型,並通過文本-圖像-視頻三元組數據驅動其學習跨模態對齊。特別地,我們在人物生成中強調主體一致性,涵蓋了現有的ID保持視頻生成,同時提供了更優越的性能。項目主頁請訪問:https://phantom-video.github.io/Phantom/。
English
The continuous development of foundational models for video generation is
evolving into various applications, with subject-consistent video generation
still in the exploratory stage. We refer to this as Subject-to-Video, which
extracts subject elements from reference images and generates
subject-consistent video through textual instructions. We believe that the
essence of subject-to-video lies in balancing the dual-modal prompts of text
and image, thereby deeply and simultaneously aligning both text and visual
content. To this end, we propose Phantom, a unified video generation framework
for both single and multi-subject references. Building on existing
text-to-video and image-to-video architectures, we redesign the joint
text-image injection model and drive it to learn cross-modal alignment via
text-image-video triplet data. In particular, we emphasize subject consistency
in human generation, covering existing ID-preserving video generation while
offering enhanced advantages. The project homepage is here
https://phantom-video.github.io/Phantom/.Summary
AI-Generated Summary