利用ViT與CNN架構從胸部X光影像診斷COVID-19嚴重程度
Diagnosing COVID-19 Severity from Chest X-Ray Images Using ViT and CNN Architectures
February 23, 2025
作者: Luis Lara, Lucia Eve Berger, Rajesh Raju, Shawn Whitfield
cs.AI
摘要
COVID-19疫情對醫療資源造成了巨大壓力,並引發了關於如何利用機器學習減輕醫生負擔、輔助診斷的討論。胸部X光片(CXRs)被用於COVID-19的診斷,但鮮有研究基於CXRs預測患者病情的嚴重程度。在本研究中,我們通過整合三個數據源創建了一個大型COVID嚴重程度數據集,並探討了基於ImageNet和CXR預訓練模型以及視覺Transformer(ViTs)在嚴重程度回歸和分類任務中的效果。在三分類嚴重程度預測問題上,預訓練的DenseNet161模型表現最佳,總體準確率達80%,在輕度、中度和重度病例上的準確率分別為77.3%、83.9%和70%。而ViT在回歸任務中表現最優,其預測的嚴重程度評分與放射科醫生的評分相比,平均絕對誤差為0.5676。本項目的源代碼已公開提供。
English
The COVID-19 pandemic strained healthcare resources and prompted discussion
about how machine learning can alleviate physician burdens and contribute to
diagnosis. Chest x-rays (CXRs) are used for diagnosis of COVID-19, but few
studies predict the severity of a patient's condition from CXRs. In this study,
we produce a large COVID severity dataset by merging three sources and
investigate the efficacy of transfer learning using ImageNet- and
CXR-pretrained models and vision transformers (ViTs) in both severity
regression and classification tasks. A pretrained DenseNet161 model performed
the best on the three class severity prediction problem, reaching 80% accuracy
overall and 77.3%, 83.9%, and 70% on mild, moderate and severe cases,
respectively. The ViT had the best regression results, with a mean absolute
error of 0.5676 compared to radiologist-predicted severity scores. The
project's source code is publicly available.Summary
AI-Generated Summary