ChatPaper.aiChatPaper

神經符號查詢編譯器

Neuro-Symbolic Query Compiler

May 17, 2025
作者: Yuyao Zhang, Zhicheng Dou, Xiaoxi Li, Jiajie Jin, Yongkang Wu, Zhonghua Li, Qi Ye, Ji-Rong Wen
cs.AI

摘要

在检索增强生成(RAG)系统中,精确识别搜索意图仍是一个具有挑战性的目标,尤其是在资源受限及面对具有嵌套结构和依赖关系的复杂查询时。本文提出了QCompiler,一个受语言学语法规则和编译器设计启发的神经符号框架,以弥合这一差距。该框架理论上设计了一种最小化但充分的巴科斯-诺尔范式(BNF)语法G[q],用于形式化复杂查询。与以往方法不同,此语法在保持完整性的同时,最大限度地减少了冗余。基于此,QCompiler包含了一个查询表达式翻译器、一个词法语法解析器和一个递归下降处理器,将查询编译成抽象语法树(ASTs)以供执行。叶子节点中子查询的原子性确保了更精确的文档检索和响应生成,显著提升了RAG系统处理复杂查询的能力。
English
Precise recognition of search intent in Retrieval-Augmented Generation (RAG) systems remains a challenging goal, especially under resource constraints and for complex queries with nested structures and dependencies. This paper presents QCompiler, a neuro-symbolic framework inspired by linguistic grammar rules and compiler design, to bridge this gap. It theoretically designs a minimal yet sufficient Backus-Naur Form (BNF) grammar G[q] to formalize complex queries. Unlike previous methods, this grammar maintains completeness while minimizing redundancy. Based on this, QCompiler includes a Query Expression Translator, a Lexical Syntax Parser, and a Recursive Descent Processor to compile queries into Abstract Syntax Trees (ASTs) for execution. The atomicity of the sub-queries in the leaf nodes ensures more precise document retrieval and response generation, significantly improving the RAG system's ability to address complex queries.

Summary

AI-Generated Summary

PDF143May 20, 2025