QuantAgent:基於價格驅動的多智能體大語言模型實現高頻交易
QuantAgent: Price-Driven Multi-Agent LLMs for High-Frequency Trading
September 12, 2025
作者: Fei Xiong, Xiang Zhang, Aosong Feng, Siqi Sun, Chenyu You
cs.AI
摘要
近期,大型語言模型(LLMs)在金融推理與市場理解方面展現了令人矚目的能力。如TradingAgent和FINMEM等多代理LLM框架,通過利用基本面與情緒導向的輸入,增強了這些模型在長期投資任務中的表現。然而,此類系統並不適合高頻交易(HFT)對高速與精確性的嚴苛要求。HFT需要基於結構化、短期信號(包括技術指標、圖表形態及趨勢特徵)做出快速且風險意識的決策,這與傳統金融LLM應用中典型的長期語義推理截然不同。為此,我們推出了QuantAgent,這是首個專為高頻算法交易設計的多代理LLM框架。該系統將交易分解為四個專業代理:指標、形態、趨勢與風險,每個代理均配備了領域專用工具與結構化推理能力,以捕捉短期時間窗口內市場動態的不同面向。在涵蓋比特幣與納斯達克期貨等十種金融工具的零樣本評估中,QuantAgent在4小時交易區間內的預測準確度與累計收益上均展現出優異表現,超越了強大的神經網絡與基於規則的基準模型。我們的研究表明,將結構化金融先驗知識與語言本質推理相結合,為高頻金融市場中可追溯的實時決策系統開闢了新的潛力。
English
Recent advances in Large Language Models (LLMs) have demonstrated impressive
capabilities in financial reasoning and market understanding. Multi-agent LLM
frameworks such as TradingAgent and FINMEM augment these models to long-horizon
investment tasks, leveraging fundamental and sentiment-based inputs for
strategic decision-making. However, such systems are ill-suited for the
high-speed, precision-critical demands of High-Frequency Trading (HFT). HFT
requires rapid, risk-aware decisions based on structured, short-horizon
signals, including technical indicators, chart patterns, and trend-based
features, distinct from the long-term semantic reasoning typical of traditional
financial LLM applications. To this end, we introduce QuantAgent, the first
multi-agent LLM framework explicitly designed for high-frequency algorithmic
trading. The system decomposes trading into four specialized agents, Indicator,
Pattern, Trend, and Risk, each equipped with domain-specific tools and
structured reasoning capabilities to capture distinct aspects of market
dynamics over short temporal windows. In zero-shot evaluations across ten
financial instruments, including Bitcoin and Nasdaq futures, QuantAgent
demonstrates superior performance in both predictive accuracy and cumulative
return over 4-hour trading intervals, outperforming strong neural and
rule-based baselines. Our findings suggest that combining structured financial
priors with language-native reasoning unlocks new potential for traceable,
real-time decision systems in high-frequency financial markets.