ERGO:多輪語言模型生成優化中的熵引導重置策略
ERGO: Entropy-guided Resetting for Generation Optimization in Multi-turn Language Models
October 15, 2025
作者: Haziq Mohammad Khalid, Athikash Jeyaganthan, Timothy Do, Yicheng Fu, Sean O'Brien, Vasu Sharma, Kevin Zhu
cs.AI
摘要
大型語言模型(LLMs)在資訊逐步呈現的多輪對話中,性能會顯著下降。考慮到多輪對話是日常與LLMs互動的特徵,這種性能下降對實際應用構成了嚴峻挑戰。我們假設,模型不確定性的突然增加標誌著多輪LLM互動中的不對齊,並利用這一洞察力來動態重新對齊對話上下文。我們引入了ERGO(基於熵的生成優化重置),它通過對下一個詞元分佈的香農熵持續量化內部不確定性,並在檢測到熵的急劇上升時觸發自適應提示整合。通過將不確定性視為首要信號而非需要消除的干擾,ERGO接納了語言和建模中的變異性,並對不確定性進行表示和響應。在逐步揭示指令的多輪任務中,ERGO相比標準基線平均提升了56.6%的性能,提高了24.7%的適任能力(峰值性能能力),並減少了35.3%的不可靠性(性能變異性),這表明對不確定性有意識的干預能夠提升對話AI的準確性和可靠性。
English
Large Language Models (LLMs) suffer significant performance degradation in
multi-turn conversations when information is presented incrementally. Given
that multi-turn conversations characterize everyday interactions with LLMs,
this degradation poses a severe challenge to real world usability. We
hypothesize that abrupt increases in model uncertainty signal misalignment in
multi-turn LLM interactions, and we exploit this insight to dynamically realign
conversational context. We introduce ERGO (Entropy-guided Resetting for
Generation Optimization), which continuously quantifies internal uncertainty
via Shannon entropy over next token distributions and triggers adaptive prompt
consolidation when a sharp spike in entropy is detected. By treating
uncertainty as a first class signal rather than a nuisance to eliminate, ERGO
embraces variability in language and modeling, representing and responding to
uncertainty. In multi-turn tasks with incrementally revealed instructions, ERGO
yields a 56.6% average performance gain over standard baselines, increases
aptitude (peak performance capability) by 24.7%, and decreases unreliability
(variability in performance) by 35.3%, demonstrating that uncertainty aware
interventions can improve both accuracy and reliability in conversational AI.