IPAdapter-Instruct:使用Instruct提示解決基於圖像條件的歧義
IPAdapter-Instruct: Resolving Ambiguity in Image-based Conditioning using Instruct Prompts
August 6, 2024
作者: Ciara Rowles, Shimon Vainer, Dante De Nigris, Slava Elizarov, Konstantin Kutsy, Simon Donné
cs.AI
摘要
擴散模型不斷推動最先進的圖像生成技術,但這個過程很難以微妙的方式進行控制:實踐證明,文本提示無法準確描述圖像風格或細微結構細節(如臉部)。ControlNet和IPAdapter解決了這一不足,通過將生成過程條件化為圖像,但每個個別實例僅限於建模單個條件後驗:對於實際應用案例,在同一工作流程中需要多個不同的後驗時,訓練和使用多個適配器很繁瑣。我們提出了IPAdapter-Instruct,將自然圖像條件與“Instruct”提示相結合,以便在相同的條件圖像之間切換解釋:風格轉移、對象提取、兩者或其他什麼?IPAdapterInstruct有效地學習多個任務,與專用的每個任務模型相比,質量損失最小。
English
Diffusion models continuously push the boundary of state-of-the-art image
generation, but the process is hard to control with any nuance: practice proves
that textual prompts are inadequate for accurately describing image style or
fine structural details (such as faces). ControlNet and IPAdapter address this
shortcoming by conditioning the generative process on imagery instead, but each
individual instance is limited to modeling a single conditional posterior: for
practical use-cases, where multiple different posteriors are desired within the
same workflow, training and using multiple adapters is cumbersome. We propose
IPAdapter-Instruct, which combines natural-image conditioning with ``Instruct''
prompts to swap between interpretations for the same conditioning image: style
transfer, object extraction, both, or something else still? IPAdapterInstruct
efficiently learns multiple tasks with minimal loss in quality compared to
dedicated per-task models.Summary
AI-Generated Summary