颱風OCR:面向泰文文件擷取的開放視覺語言模型
Typhoon OCR: Open Vision-Language Model For Thai Document Extraction
January 21, 2026
作者: Surapon Nonesung, Natapong Nitarach, Teetouch Jaknamon, Pittawat Taveekitworachai, Kunat Pipatanakul
cs.AI
摘要
文件擷取是數位工作流程的核心環節,然而現有的視覺語言模型主要偏向高資源語言。泰文由於非拉丁字母的文字複雜性、缺乏明確詞邊界,以及現實中高度非結構化文件的普遍存在,使得當前開源模型的效果受限。本文提出Typhoon OCR——一個專為泰文與英文設計的開放式視覺語言文件擷取模型。該模型基於視覺語言基礎架構,透過以泰文為核心的訓練數據集進行微調。該數據集採用多階段建構流程,結合傳統OCR技術、基於VLM的重構方法與精選合成數據。Typhoon OCR作為統一框架,能同時處理文字轉錄、版面重建與文件層級的結構一致性。我們的最新版本Typhoon OCR V1.5是具備推論效率的輕量化模型,旨在降低對元數據的依賴並簡化部署。針對泰文各類文件(含財務報表、政府表格、書籍、資訊圖表與手寫文件)的綜合評估顯示,Typhoon OCR在顯著降低計算成本的同時,達到與大型專有前沿模型相當或更優的效能。實驗結果證實,開放式視覺語言OCR模型能實現泰文文件的精準文字擷取與版面重建,在保持輕量可部署的優勢下,效能可媲美專有系統。
English
Document extraction is a core component of digital workflows, yet existing vision-language models (VLMs) predominantly favor high-resource languages. Thai presents additional challenges due to script complexity from non-latin letters, the absence of explicit word boundaries, and the prevalence of highly unstructured real-world documents, limiting the effectiveness of current open-source models. This paper presents Typhoon OCR, an open VLM for document extraction tailored for Thai and English. The model is fine-tuned from vision-language backbones using a Thai-focused training dataset. The dataset is developed using a multi-stage data construction pipeline that combines traditional OCR, VLM-based restructuring, and curated synthetic data. Typhoon OCR is a unified framework capable of text transcription, layout reconstruction, and document-level structural consistency. The latest iteration of our model, Typhoon OCR V1.5, is a compact and inference-efficient model designed to reduce reliance on metadata and simplify deployment. Comprehensive evaluations across diverse Thai document categories, including financial reports, government forms, books, infographics, and handwritten documents, show that Typhoon OCR achieves performance comparable to or exceeding larger frontier proprietary models, despite substantially lower computational cost. The results demonstrate that open vision-language OCR models can achieve accurate text extraction and layout reconstruction for Thai documents, reaching performance comparable to proprietary systems while remaining lightweight and deployable.