長貓閃思2601技術報告
LongCat-Flash-Thinking-2601 Technical Report
January 23, 2026
作者: Meituan LongCat Team, Anchun Gui, Bei Li, Bingyang Tao, Bole Zhou, Borun Chen, Chao Zhang, Chao Zhang, Chen Gao, Chen Zhang, Chengcheng Han, Chenhui Yang, Chuyu Zhang, Cong Chen, Cunguang Wang, Daoru Pan, Defei Bu, Dengchang Zhao, Di Xiu, Dishan Liu, Dongyu Ru, Dunwei Tu, Fan Wu, Fengcheng Yuan, Fengcun Li, Gang Xu, Guanyu Wu, Guoyuan Lin, Haibin Wang, Hansi Yang, Hao Yang, Haonan Yan, Haoxiang Ma, Haoxing Wen, Hongyan Hao, Hongyin Tang, Hongyu Zang, Hongzhi Ni, Hui Su, Jiacheng Zhang, Jiahong Zhou, Jiahuan Li, Jiaming Wang, Jian Yang, Jianfei Zhang, Jianhao Xu, Jianing Wang, Jiapeng Zhu, Jiaqi Sun, Jiarong Shi, Jiarui Zhao, Jingang Wang, Jinluan Yang, Jinrui Ding, Jinwei Xiao, Jiyuan He, Juncan Xu, Kefeng Zhang, Keheng Wang, Li Wei, Lianhui Ma, Lin Qiu, Lingbing Kong, Lingchuan Liu, Linsen Guo, Mengshen Zhu, Mengxia Shen, Mingyang Zhu, Peiguang Li, Peng Pei, Pengcheng Jia, Pengtao Zhang, Peng Zhao, Qi Gu, Qiong Huang, Qiyuan Duan, Quanchi Weng, Rongxiang Weng, Rongzhi Zhang, Rumei Li, Shanglin Lei, Shengnan An, Shijun Dai, Shuaikang Liu, Shuang Zhou, Shuo Wang, Songyuan Zhao, Tao Liang, Tianhao Hu, Tianze Chen, Wei Liu, Wei Shi, Wei Wang, Weifeng Tang, Wenjie Shi, Wenlong Zhu, Wentao Chen, Wentao Shi, Xi Su, Xiangcheng Liu, Xiandi Ma, Xiangyu Xi, Xiangyuan Liu, Xiangzhou Huang, Xiao Liu, Xiaodong Cai, Xiaolong Chen, Xiaowei Shi, Xiaoyu Li, Xin Chen, Xingchen Liu, Xuan Huang, Xuezhi Cao, Xunliang Cai, Yan Chen, Yang Bai, Yang Liu, Yang Yang, Yang Zheng, Yaoming Wang, Yaoming Zhu, Yaqi Huo, Yanyu Chen, Yaorui Shi, Yerui Sun, Yi Zhang, Yihao Chen, Yi-Kai Zhang, Yifan Lu, Yifan Zhao, Yitao Zhai, Yongjing Yin, Yongwei Zhou, Youshao Xiao, Yuchuan Dai, Yuchen Xie, Yuchen Yu, Yufei Zhang, Yuhuai Wei, Yulei Qian, Yunfan Liang, Yunke Zhao, Yuwei Jiang, Yuxin Bian, Yuxin Chen, Yuxin Liu, Yue Xu, Yueqing Sun, Zeyang Yu, Zhao Yang, Zhengsheng Huang, Zhengyu Chen, Zhijian Liu, Zhikang Xia, Zhimin Lin, Zhiyuan Yao, Zhuofan Chen, Zhuowen Han, Zijian Zhang, Ziran Li, Ziwen Wang, Ziyuan Zhuang
cs.AI
摘要
我們推出LongCat-Flash-Thinking-2601,這是一個擁有5600億參數的開源專家混合推理模型,具備卓越的智能體推理能力。該模型在廣泛的智能體基準測試中實現了開源模型的頂尖性能,包括智能體搜索、智能體工具使用及工具整合推理。除基準表現外,該模型還展現出對複雜工具交互的強大泛化能力,以及在噪聲現實環境中的穩健行為。其先進能力源於統一的訓練框架,該框架結合了領域並行專家訓練與後續融合技術,並實現了從預訓練到後訓練階段涵蓋數據構建、環境、算法與基礎設施的端到端協同設計。特別是在複雜工具使用方面的強大泛化能力,得益於我們對環境擴展與原則性任務構建的深入探索。為優化長尾分佈、偏態生成與多輪智能體交互,並實現跨20餘領域、超萬種環境的穩定訓練,我們系統性擴展了異步強化學習框架DORA,以支持大規模多環境的穩定高效訓練。此外,針對現實任務固有的噪聲特性,我們系統分析並分解了現實噪聲模式,設計了針對性訓練流程,將此類不完美因素顯式融入訓練過程,從而提升現實應用的魯棒性。為進一步增強複雜推理任務性能,我們引入「深度思考模式」,通過密集並行思考同步擴展推理深度與寬度,實現有效的測試時擴展。
English
We introduce LongCat-Flash-Thinking-2601, a 560-billion-parameter open-source Mixture-of-Experts (MoE) reasoning model with superior agentic reasoning capability. LongCat-Flash-Thinking-2601 achieves state-of-the-art performance among open-source models on a wide range of agentic benchmarks, including agentic search, agentic tool use, and tool-integrated reasoning. Beyond benchmark performance, the model demonstrates strong generalization to complex tool interactions and robust behavior under noisy real-world environments. Its advanced capability stems from a unified training framework that combines domain-parallel expert training with subsequent fusion, together with an end-to-end co-design of data construction, environments, algorithms, and infrastructure spanning from pre-training to post-training. In particular, the model's strong generalization capability in complex tool-use are driven by our in-depth exploration of environment scaling and principled task construction. To optimize long-tailed, skewed generation and multi-turn agentic interactions, and to enable stable training across over 10,000 environments spanning more than 20 domains, we systematically extend our asynchronous reinforcement learning framework, DORA, for stable and efficient large-scale multi-environment training. Furthermore, recognizing that real-world tasks are inherently noisy, we conduct a systematic analysis and decomposition of real-world noise patterns, and design targeted training procedures to explicitly incorporate such imperfections into the training process, resulting in improved robustness for real-world applications. To further enhance performance on complex reasoning tasks, we introduce a Heavy Thinking mode that enables effective test-time scaling by jointly expanding reasoning depth and width through intensive parallel thinking.