SIFT:透過貼紙將大型語言模型的推理能力根植於情境中
SIFT: Grounding LLM Reasoning in Contexts via Stickers
February 19, 2025
作者: Zihao Zeng, Xuyao Huang, Boxiu Li, Zhijie Deng
cs.AI
摘要
本文指出,在大型語言模型的推理過程中,對上下文語境的誤解可能成為一個顯著問題,這一現象從較小模型如Llama3.2-3B-Instruct到尖端模型如DeepSeek-R1均有體現。例如,在短語“每公斤10美元”中,LLMs可能未能識別“每”意指“每一”,從而導致計算錯誤。為此,我們引入了一種新穎的後訓練方法——**堅守事實(SIFT)**,以應對這一挑戰。SIFT利用增強的推理時計算能力,將LLM的推理過程錨定於上下文之中。SIFT的核心在於*標籤器*,它由模型自身生成,旨在明確強調上下文中的關鍵信息。基於精心設計的標籤器,SIFT會生成兩個預測結果——一個來自原始查詢,另一個則來自於結合了標籤器的查詢。若兩者存在差異,標籤器將通過*正向*優化(以更好地使提取的事實與查詢對齊)和*逆向*生成(以符合模型的內在傾向)進行序列化精煉,從而獲得更為忠實的推理結果。跨多種模型(從3B到100B+)和基準測試(如GSM8K、MATH-500)的研究均顯示出性能的持續提升。尤為突出的是,SIFT將DeepSeek-R1在AIME2024上的pass@1準確率從78.33%提升至**85.67%**,在開源社區中樹立了新的技術標杆。相關代碼已公開於https://github.com/zhijie-group/SIFT。
English
This paper identifies the misinterpretation of the context can be a
significant issue during the reasoning process of large language models,
spanning from smaller models like Llama3.2-3B-Instruct to cutting-edge ones
like DeepSeek-R1. For example, in the phrase "10 dollars per kilo," LLMs might
not recognize that "per" means "for each," leading to calculation errors. We
introduce a novel, post-training approach called **Stick to the Facts (SIFT)**
to tackle this. SIFT leverages increasing inference-time compute to ground LLM
reasoning in contexts. At the core of SIFT lies the *Sticker*, which is
generated by the model itself to explicitly emphasize the key information
within the context. Given the curated Sticker, SIFT generates two predictions
-- one from the original query and one from the query augmented with the
Sticker. If they differ, the Sticker is sequentially refined via *forward*
optimization (to better align the extracted facts with the query) and *inverse*
generation (to conform with the model's inherent tendencies) for more faithful
reasoning outcomes. Studies across diverse models (from 3B to 100B+) and
benchmarks (e.g., GSM8K, MATH-500) reveal consistent performance improvements.
Notably, SIFT improves the pass@1 accuracy of DeepSeek-R1 on AIME2024 from
78.33% to **85.67**%, establishing a new state-of-the-art in the open-source
community. The code is available at https://github.com/zhijie-group/SIFT.Summary
AI-Generated Summary