LLM-ABR:透過大型語言模型設計適應性比特率算法
LLM-ABR: Designing Adaptive Bitrate Algorithms via Large Language Models
April 2, 2024
作者: Zhiyuan He, Aashish Gottipati, Lili Qiu, Francis Y. Yan, Xufang Luo, Kenuo Xu, Yuqing Yang
cs.AI
摘要
我們提出了LLM-ABR,這是第一個利用大型語言模型(LLMs)的生成能力來自主設計適應不同網絡特性的自適應位元率(ABR)算法的系統。在強化學習框架內運行,LLM-ABR賦予LLMs設計關鍵組件,如狀態和神經網絡架構的能力。我們在不同網絡環境下評估LLM-ABR,包括寬頻、衛星、4G和5G。LLM-ABR在各種網絡設置中始終優於默認的ABR算法。
English
We present LLM-ABR, the first system that utilizes the generative
capabilities of large language models (LLMs) to autonomously design adaptive
bitrate (ABR) algorithms tailored for diverse network characteristics.
Operating within a reinforcement learning framework, LLM-ABR empowers LLMs to
design key components such as states and neural network architectures. We
evaluate LLM-ABR across diverse network settings, including broadband,
satellite, 4G, and 5G. LLM-ABR consistently outperforms default ABR algorithms.