鳥類的時間一致性三維重建
Temporally-consistent 3D Reconstruction of Birds
August 24, 2024
作者: Johannes Hägerlind, Jonas Hentati-Sundberg, Bastian Wandt
cs.AI
摘要
本文討論了海鳥的三維重建,最近成為環境科學家關注的焦點,作為環境變化的有價值生物指標。這樣的三維信息有助於分析鳥類的行為和生理形態,例如通過跟踪運動、形狀和外觀變化。從計算機視覺的角度來看,鳥類特別具有挑戰性,因為它們的運動往往是快速的且非剛性的。我們提出了一種方法,從單眼視頻中重建特定品種海鳥 - 普通海鸚鵡的三維姿態和形狀。我們的方法包括檢測、跟踪、分割和時間一致的三維重建完整流程。此外,我們提出了一種時間損失,將當前的單幅圖像三維鳥類姿態估計擴展到時間域。此外,我們提供了一個現實世界的數據集,平均包含10000幀視頻觀測,同時捕捉九只鳥,包括各種運動和互動,還有一個帶有鳥類特定關鍵點標籤的較小測試集。使用我們的時間優化,我們在數據集中具有挑戰性的序列中實現了最先進的性能。
English
This paper deals with 3D reconstruction of seabirds which recently came into
focus of environmental scientists as valuable bio-indicators for environmental
change. Such 3D information is beneficial for analyzing the bird's behavior and
physiological shape, for example by tracking motion, shape, and appearance
changes. From a computer vision perspective birds are especially challenging
due to their rapid and oftentimes non-rigid motions. We propose an approach to
reconstruct the 3D pose and shape from monocular videos of a specific breed of
seabird - the common murre. Our approach comprises a full pipeline of
detection, tracking, segmentation, and temporally consistent 3D reconstruction.
Additionally, we propose a temporal loss that extends current single-image 3D
bird pose estimators to the temporal domain. Moreover, we provide a real-world
dataset of 10000 frames of video observations on average capture nine birds
simultaneously, comprising a large variety of motions and interactions,
including a smaller test set with bird-specific keypoint labels. Using our
temporal optimization, we achieve state-of-the-art performance for the
challenging sequences in our dataset.Summary
AI-Generated Summary