ChatPaper.aiChatPaper

ReaRAG:知識引導的推理通過迭代檢索增強生成提升大型推理模型的事實性

ReaRAG: Knowledge-guided Reasoning Enhances Factuality of Large Reasoning Models with Iterative Retrieval Augmented Generation

March 27, 2025
作者: Zhicheng Lee, Shulin Cao, Jinxin Liu, Jiajie Zhang, Weichuan Liu, Xiaoyin Che, Lei Hou, Juanzi Li
cs.AI

摘要

大型推理模型(LRMs)展現了卓越的推理能力,但主要依賴於參數化知識,這限制了其事實準確性。儘管近期研究為基於強化學習(RL)的LRMs配備了檢索能力,這些模型仍存在過度思考及推理缺乏魯棒性的問題,降低了其在問答(QA)任務中的效能。為解決此問題,我們提出了ReaRAG,這是一個增強事實性的推理模型,它能在不過度迭代的情況下探索多樣化的查詢。我們的解決方案包括一個新穎的數據構建框架,該框架對推理鏈長度設定了上限。具體而言,我們首先利用LRM生成深思熟慮的思考,然後從預定義的行動空間(搜索與完成)中選擇一個行動。對於搜索行動,會對RAG引擎執行查詢,其結果作為觀察返回,以指導後續的推理步驟。此過程迭代進行,直到選擇完成行動為止。得益於ReaRAG強大的推理能力,我們的方法在多跳QA任務上超越了現有的基準。進一步的分析凸顯了其強大的反思能力,能夠識別錯誤並精煉其推理軌跡。我們的研究在增強LRMs事實性的同時,有效地整合了檢索增強生成(RAG)的魯棒推理。
English
Large Reasoning Models (LRMs) exhibit remarkable reasoning abilities but rely primarily on parametric knowledge, limiting factual accuracy. While recent works equip reinforcement learning (RL)-based LRMs with retrieval capabilities, they suffer from overthinking and lack robustness in reasoning, reducing their effectiveness in question answering (QA) tasks. To address this, we propose ReaRAG, a factuality-enhanced reasoning model that explores diverse queries without excessive iterations. Our solution includes a novel data construction framework with an upper bound on the reasoning chain length. Specifically, we first leverage an LRM to generate deliberate thinking, then select an action from a predefined action space (Search and Finish). For Search action, a query is executed against the RAG engine, where the result is returned as observation to guide reasoning steps later. This process iterates until a Finish action is chosen. Benefiting from ReaRAG's strong reasoning capabilities, our approach outperforms existing baselines on multi-hop QA. Further analysis highlights its strong reflective ability to recognize errors and refine its reasoning trajectory. Our study enhances LRMs' factuality while effectively integrating robust reasoning for Retrieval-Augmented Generation (RAG).

Summary

AI-Generated Summary

PDF284March 28, 2025