高斯頭像:通過動態高斯實現超高保真頭像
Gaussian Head Avatar: Ultra High-fidelity Head Avatar via Dynamic Gaussians
December 5, 2023
作者: Yuelang Xu, Benwang Chen, Zhe Li, Hongwen Zhang, Lizhen Wang, Zerong Zheng, Yebin Liu
cs.AI
摘要
在輕量稀疏視角設置下,創建高保真度的3D頭像一直是研究的熱點,但仍然存在著巨大挑戰。本文提出了高保真度頭像建模的高斯頭像方法,使用可控的3D高斯模型來表示。我們優化了中性的3D高斯模型,並通過完全學習的基於MLP的變形場來捕捉複雜的表情。這兩部分互相補充,因此我們的方法可以在確保表情準確性的同時模擬細緻的動態細節。此外,我們設計了一個基於隱式SDF和深度行進四面體的幾何引導初始化策略,以確保訓練過程的穩定性和收斂性。實驗表明,我們的方法優於其他最先進的稀疏視角方法,在2K分辨率下甚至在夸張的表情下實現了超高保真度的渲染質量。
English
Creating high-fidelity 3D head avatars has always been a research hotspot,
but there remains a great challenge under lightweight sparse view setups. In
this paper, we propose Gaussian Head Avatar represented by controllable 3D
Gaussians for high-fidelity head avatar modeling. We optimize the neutral 3D
Gaussians and a fully learned MLP-based deformation field to capture complex
expressions. The two parts benefit each other, thereby our method can model
fine-grained dynamic details while ensuring expression accuracy. Furthermore,
we devise a well-designed geometry-guided initialization strategy based on
implicit SDF and Deep Marching Tetrahedra for the stability and convergence of
the training procedure. Experiments show our approach outperforms other
state-of-the-art sparse-view methods, achieving ultra high-fidelity rendering
quality at 2K resolution even under exaggerated expressions.