透過高斯潑濺技術構建複雜關節物體的互動式複製品
Building Interactable Replicas of Complex Articulated Objects via Gaussian Splatting
February 26, 2025
作者: Yu Liu, Baoxiong Jia, Ruijie Lu, Junfeng Ni, Song-Chun Zhu, Siyuan Huang
cs.AI
摘要
構建關節化物體是計算機視覺領域的一個關鍵挑戰。現有方法往往無法有效地整合不同物體狀態之間的信息,這限制了部件網格重建和部件動力學建模的準確性,尤其是在處理複雜的多部件關節化物體時。我們提出了ArtGS,這是一種新穎的方法,利用3D高斯作為靈活且高效的表示來解決這些問題。我們的方法結合了規範高斯與從粗到細的初始化和更新策略,以對齊不同物體狀態下的關節部件信息,並採用了一個受蒙皮啟發的部件動力學建模模塊,以提升部件網格重建和關節學習的效果。在合成和真實世界數據集上的大量實驗,包括一個針對複雜多部件物體的新基準測試,表明ArtGS在聯合參數估計和部件網格重建方面達到了最先進的性能。我們的方法顯著提高了重建質量和效率,尤其是在處理多部件關節化物體時。此外,我們還提供了對設計選擇的全面分析,驗證了每個組件的有效性,並指出了未來改進的潛在方向。
English
Building articulated objects is a key challenge in computer vision. Existing
methods often fail to effectively integrate information across different object
states, limiting the accuracy of part-mesh reconstruction and part dynamics
modeling, particularly for complex multi-part articulated objects. We introduce
ArtGS, a novel approach that leverages 3D Gaussians as a flexible and efficient
representation to address these issues. Our method incorporates canonical
Gaussians with coarse-to-fine initialization and updates for aligning
articulated part information across different object states, and employs a
skinning-inspired part dynamics modeling module to improve both part-mesh
reconstruction and articulation learning. Extensive experiments on both
synthetic and real-world datasets, including a new benchmark for complex
multi-part objects, demonstrate that ArtGS achieves state-of-the-art
performance in joint parameter estimation and part mesh reconstruction. Our
approach significantly improves reconstruction quality and efficiency,
especially for multi-part articulated objects. Additionally, we provide
comprehensive analyses of our design choices, validating the effectiveness of
each component to highlight potential areas for future improvement.Summary
AI-Generated Summary