ChatPaper.aiChatPaper

WeatherBench 2:下一代數據驅動全球天氣模型的基準測試

WeatherBench 2: A benchmark for the next generation of data-driven global weather models

August 29, 2023
作者: Stephan Rasp, Stephan Hoyer, Alexander Merose, Ian Langmore, Peter Battaglia, Tyler Russel, Alvaro Sanchez-Gonzalez, Vivian Yang, Rob Carver, Shreya Agrawal, Matthew Chantry, Zied Ben Bouallegue, Peter Dueben, Carla Bromberg, Jared Sisk, Luke Barrington, Aaron Bell, Fei Sha
cs.AI

摘要

WeatherBench 2 是由 Rasp 等人(2020)提出的全球中程(1-14 天)天氣預報基準的更新版本,旨在加速數據驅動天氣建模的進展。WeatherBench 2 包括一個開源評估框架、公開可用的訓練、基準數據以及一個持續更新的網站,提供最新的指標和最先進的模型:https://sites.research.google/weatherbench。本文描述了評估框架的設計原則,並呈現了當前最先進的物理和數據驅動天氣模型的結果。這些指標基於評估領先運營天氣中心的天氣預報的已建立慣例。我們定義了一組標題分數,以提供模型性能的概觀。此外,我們還討論了當前評估設置中的注意事項,以及數據驅動天氣預報未來面臨的挑戰。
English
WeatherBench 2 is an update to the global, medium-range (1-14 day) weather forecasting benchmark proposed by Rasp et al. (2020), designed with the aim to accelerate progress in data-driven weather modeling. WeatherBench 2 consists of an open-source evaluation framework, publicly available training, ground truth and baseline data as well as a continuously updated website with the latest metrics and state-of-the-art models: https://sites.research.google/weatherbench. This paper describes the design principles of the evaluation framework and presents results for current state-of-the-art physical and data-driven weather models. The metrics are based on established practices for evaluating weather forecasts at leading operational weather centers. We define a set of headline scores to provide an overview of model performance. In addition, we also discuss caveats in the current evaluation setup and challenges for the future of data-driven weather forecasting.
PDF90December 15, 2024