方舟:一個基於Python的開源機器人學習框架
Ark: An Open-source Python-based Framework for Robot Learning
June 24, 2025
作者: Magnus Dierking, Christopher E. Mower, Sarthak Das, Huang Helong, Jiacheng Qiu, Cody Reading, Wei Chen, Huidong Liang, Huang Guowei, Jan Peters, Quan Xingyue, Jun Wang, Haitham Bou-Ammar
cs.AI
摘要
機器人學在硬件方面取得了顯著進展——從DARPA的城市與機器人挑戰賽到首屆人形機器人踢拳錦標賽——然而,商業自動化仍落後於機器學習的發展。一個主要瓶頸在於軟件:當前的機器人技術棧要求陡峭的學習曲線、低層次的C/C++專業知識、分散的工具集以及複雜的硬件集成,這與推動現代人工智能發展的以Python為中心、文檔完善的生態系統形成鮮明對比。我們推出了ARK,這是一個開源的、以Python為先的機器人框架,旨在彌合這一差距。ARK提供了一個Gym風格的環境接口,允許用戶收集數據、進行預處理,並使用最先進的模仿學習算法(如ACT、擴散策略)訓練策略,同時在高保真模擬與物理機器人之間無縫切換。輕量級的客戶端-服務器架構提供了網絡化的發布-訂閱通信,而可選的C/C++綁定確保了在需要時的實時性能。ARK附帶了可重用的模塊,用於控制、SLAM、運動規劃、系統識別和可視化,並具有原生ROS互操作性。全面的文檔和案例研究——從操作到移動導航——展示了快速原型設計、輕鬆的硬件更換以及與主流機器學習工作流程相媲美的端到端管道。通過在一個共同的Python框架下統一機器人學與人工智能實踐,ARK降低了入門門檻,並加速了自主機器人的研究與商業部署。
English
Robotics has made remarkable hardware strides-from DARPA's Urban and Robotics
Challenges to the first humanoid-robot kickboxing tournament-yet commercial
autonomy still lags behind progress in machine learning. A major bottleneck is
software: current robot stacks demand steep learning curves, low-level C/C++
expertise, fragmented tooling, and intricate hardware integration, in stark
contrast to the Python-centric, well-documented ecosystems that propelled
modern AI. We introduce ARK, an open-source, Python-first robotics framework
designed to close that gap. ARK presents a Gym-style environment interface that
allows users to collect data, preprocess it, and train policies using
state-of-the-art imitation-learning algorithms (e.g., ACT, Diffusion Policy)
while seamlessly toggling between high-fidelity simulation and physical robots.
A lightweight client-server architecture provides networked
publisher-subscriber communication, and optional C/C++ bindings ensure
real-time performance when needed. ARK ships with reusable modules for control,
SLAM, motion planning, system identification, and visualization, along with
native ROS interoperability. Comprehensive documentation and case studies-from
manipulation to mobile navigation-demonstrate rapid prototyping, effortless
hardware swapping, and end-to-end pipelines that rival the convenience of
mainstream machine-learning workflows. By unifying robotics and AI practices
under a common Python umbrella, ARK lowers entry barriers and accelerates
research and commercial deployment of autonomous robots.