拉里瑪:具有情節記憶控制的大型語言模型
Larimar: Large Language Models with Episodic Memory Control
March 18, 2024
作者: Payel Das, Subhajit Chaudhury, Elliot Nelson, Igor Melnyk, Sarath Swaminathan, Sihui Dai, Aurélie Lozano, Georgios Kollias, Vijil Chenthamarakshan, Jiří, Navrátil, Soham Dan, Pin-Yu Chen
cs.AI
摘要
在當今,有效且準確地更新存儲在大型語言模型(LLMs)中的知識是最迫切的研究挑戰之一。本文介紹了Larimar - 一種新穎的、受大腦啟發的架構,用於通過分佈式情景記憶來增強LLMs。Larimar的記憶允許動態、一次性地更新知識,無需進行計算昂貴的重新訓練或微調。在多個事實編輯基準測試中的實驗結果表明,Larimar實現了與大多數競爭基準相當的準確性,即使在具有挑戰性的順序編輯設置中,也表現出色,同時在速度方面優勢明顯 - 根據基礎LLM的不同,加速效果為4-10倍 - 並且由於所提出的架構簡單、與LLM無關,因此具有通用性。我們進一步提供了選擇性事實遺忘和輸入上下文長度泛化的機制,並展示了它們的有效性。
English
Efficient and accurate updating of knowledge stored in Large Language Models
(LLMs) is one of the most pressing research challenges today. This paper
presents Larimar - a novel, brain-inspired architecture for enhancing LLMs with
a distributed episodic memory. Larimar's memory allows for dynamic, one-shot
updates of knowledge without the need for computationally expensive re-training
or fine-tuning. Experimental results on multiple fact editing benchmarks
demonstrate that Larimar attains accuracy comparable to most competitive
baselines, even in the challenging sequential editing setup, but also excels in
speed - yielding speed-ups of 4-10x depending on the base LLM - as well as
flexibility due to the proposed architecture being simple, LLM-agnostic, and
hence general. We further provide mechanisms for selective fact forgetting and
input context length generalization with Larimar and show their effectiveness.Summary
AI-Generated Summary