口語化抽樣:如何緩解模式崩潰並釋放大語言模型的多樣性
Verbalized Sampling: How to Mitigate Mode Collapse and Unlock LLM Diversity
October 1, 2025
作者: Jiayi Zhang, Simon Yu, Derek Chong, Anthony Sicilia, Michael R. Tomz, Christopher D. Manning, Weiyan Shi
cs.AI
摘要
訓練後對齊往往會降低大型語言模型(LLM)的多樣性,導致一種被稱為模式崩潰的現象。與先前研究將此效應歸因於算法限制不同,我們發現了一個根本且普遍存在於數據層面的驅動因素:偏好數據中的典型性偏見,即由於認知心理學中已確立的發現,註釋者系統性地偏好熟悉的文本。我們從理論上形式化了這種偏見,並在偏好數據集上進行了實證驗證,顯示其在模式崩潰中扮演了核心角色。基於此分析,我們引入了「言語化抽樣」(Verbalized Sampling, VS),這是一種簡單、無需訓練的提示策略,旨在規避模式崩潰。VS提示模型對一組回應進行概率分佈的言語化描述(例如,「生成5個關於咖啡的笑話及其對應的概率」)。全面的實驗表明,VS在創意寫作(詩歌、故事、笑話)、對話模擬、開放式問答以及合成數據生成等方面顯著提升了性能,且未犧牲事實準確性和安全性。例如,在創意寫作中,VS相比直接提示將多樣性提高了1.6至2.1倍。我們進一步觀察到一個新興趨勢,即能力更強的模型從VS中獲益更多。總之,我們的工作為模式崩潰提供了一個新的以數據為中心的視角,以及一個實用的推理時補救措施,有助於釋放預訓練生成模型的多樣性潛力。
English
Post-training alignment often reduces LLM diversity, leading to a phenomenon
known as mode collapse. Unlike prior work that attributes this effect to
algorithmic limitations, we identify a fundamental, pervasive data-level
driver: typicality bias in preference data, whereby annotators systematically
favor familiar text as a result of well-established findings in cognitive
psychology. We formalize this bias theoretically, verify it on preference
datasets empirically, and show that it plays a central role in mode collapse.
Motivated by this analysis, we introduce Verbalized Sampling, a simple,
training-free prompting strategy to circumvent mode collapse. VS prompts the
model to verbalize a probability distribution over a set of responses (e.g.,
``Generate 5 jokes about coffee and their corresponding probabilities'').
Comprehensive experiments show that VS significantly improves performance
across creative writing (poems, stories, jokes), dialogue simulation,
open-ended QA, and synthetic data generation, without sacrificing factual
accuracy and safety. For instance, in creative writing, VS increases diversity
by 1.6-2.1x over direct prompting. We further observe an emergent trend that
more capable models benefit more from VS. In sum, our work provides a new
data-centric perspective on mode collapse and a practical inference-time remedy
that helps unlock pre-trained generative diversity.