MUSEG:通過時間戳感知的多片段定位強化視頻時序理解
MUSEG: Reinforcing Video Temporal Understanding via Timestamp-Aware Multi-Segment Grounding
May 27, 2025
作者: Fuwen Luo, Shengfeng Lou, Chi Chen, Ziyue Wang, Chenliang Li, Weizhou Shen, Jiyue Guo, Peng Li, Ming Yan, Ji Zhang, Fei Huang, Yang Liu
cs.AI
摘要
視頻時間理解對於多模態大型語言模型(MLLMs)在推理視頻事件中至關重要。儘管在通用視頻理解方面取得了最新進展,當前的MLLMs在細粒度時間推理上仍面臨挑戰。雖然近期已探索使用強化學習(RL)來解決這一問題,但現有的RL方法在效果上仍顯不足。本研究提出MUSEG,一種新穎的基於RL的方法,通過引入時間戳感知的多片段定位來增強時間理解能力。MUSEG使MLLMs能夠將查詢與多個相關視頻片段對齊,從而促進更全面的時間推理。為了實現有效學習,我們設計了一種定制的RL訓練方案,採用分階段獎勵,逐步引導模型進行時間定位推理。在時間定位和時間敏感視頻問答任務上的大量實驗表明,MUSEG顯著優於現有方法,並在多樣化的時間理解場景中展現出良好的泛化能力。請訪問我們的項目頁面:https://github.com/THUNLP-MT/MUSEG。
English
Video temporal understanding is crucial for multimodal large language models
(MLLMs) to reason over events in videos. Despite recent advances in general
video understanding, current MLLMs still struggle with fine-grained temporal
reasoning. While reinforcement learning (RL) has been explored to address this
issue recently, existing RL approaches remain limited in effectiveness. In this
work, we propose MUSEG, a novel RL-based method that enhances temporal
understanding by introducing timestamp-aware multi-segment grounding. MUSEG
enables MLLMs to align queries with multiple relevant video segments, promoting
more comprehensive temporal reasoning. To facilitate effective learning, we
design a customized RL training recipe with phased rewards that progressively
guides the model toward temporally grounded reasoning. Extensive experiments on
temporal grounding and time-sensitive video QA tasks demonstrate that MUSEG
significantly outperforms existing methods and generalizes well across diverse
temporal understanding scenarios. View our project at
https://github.com/THUNLP-MT/MUSEG.Summary
AI-Generated Summary