DeepSeek LLM:以長期主義擴展開源語言模型
DeepSeek LLM: Scaling Open-Source Language Models with Longtermism
January 5, 2024
作者: DeepSeek-AI, Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng, Honghui Ding, Kai Dong, Qiushi Du, Zhe Fu, Huazuo Gao, Kaige Gao, Wenjun Gao, Ruiqi Ge, Kang Guan, Daya Guo, Jianzhong Guo, Guangbo Hao, Zhewen Hao, Ying He, Wenjie Hu, Panpan Huang, Erhang Li, Guowei Li, Jiashi Li, Yao Li, Y. K. Li, Wenfeng Liang, Fangyun Lin, A. X. Liu, Bo Liu, Wen Liu, Xiaodong Liu, Xin Liu, Yiyuan Liu, Haoyu Lu, Shanghao Lu, Fuli Luo, Shirong Ma, Xiaotao Nie, Tian Pei, Yishi Piao, Junjie Qiu, Hui Qu, Tongzheng Ren, Zehui Ren, Chong Ruan, Zhangli Sha, Zhihong Shao, Junxiao Song, Xuecheng Su, Jingxiang Sun, Yaofeng Sun, Minghui Tang, Bingxuan Wang, Peiyi Wang, Shiyu Wang, Yaohui Wang, Yongji Wang, Tong Wu, Y. Wu, Xin Xie, Zhenda Xie, Ziwei Xie, Yiliang Xiong, Hanwei Xu, R. X. Xu, Yanhong Xu, Dejian Yang, Yuxiang You, Shuiping Yu, Xingkai Yu, B. Zhang, Haowei Zhang, Lecong Zhang, Liyue Zhang, Mingchuan Zhang, Minghua Zhang, Wentao Zhang, Yichao Zhang, Chenggang Zhao, Yao Zhao, Shangyan Zhou, Shunfeng Zhou, Qihao Zhu, Yuheng Zou
cs.AI
摘要
開源大型語言模型(LLMs)的快速發展令人印象深刻。然而,先前文獻中描述的擴展法則呈現出不同的結論,這為擴展LLMs投下陰影。我們深入研究擴展法則,提出我們獨特的研究結果,促進了在兩種常用的開源配置(7B和67B)中擴展大型模型。在擴展法則的指導下,我們推出了DeepSeek LLM,這是一個致力於以長期視角推進開源語言模型的項目。為了支持預訓練階段,我們開發了一個數據集,目前包含2兆個標記,並持續擴充。我們進一步對DeepSeek LLM基本模型進行監督微調(SFT)和直接偏好優化(DPO),從而創建了DeepSeek Chat模型。我們的評估結果表明,DeepSeek LLM 67B在各種基準測試中超越了LLaMA-2 70B,特別是在代碼、數學和推理領域。此外,開放式評估顯示,DeepSeek LLM 67B Chat在性能上優於GPT-3.5。
English
The rapid development of open-source large language models (LLMs) has been
truly remarkable. However, the scaling law described in previous literature
presents varying conclusions, which casts a dark cloud over scaling LLMs. We
delve into the study of scaling laws and present our distinctive findings that
facilitate scaling of large scale models in two commonly used open-source
configurations, 7B and 67B. Guided by the scaling laws, we introduce DeepSeek
LLM, a project dedicated to advancing open-source language models with a
long-term perspective. To support the pre-training phase, we have developed a
dataset that currently consists of 2 trillion tokens and is continuously
expanding. We further conduct supervised fine-tuning (SFT) and Direct
Preference Optimization (DPO) on DeepSeek LLM Base models, resulting in the
creation of DeepSeek Chat models. Our evaluation results demonstrate that
DeepSeek LLM 67B surpasses LLaMA-2 70B on various benchmarks, particularly in
the domains of code, mathematics, and reasoning. Furthermore, open-ended
evaluations reveal that DeepSeek LLM 67B Chat exhibits superior performance
compared to GPT-3.5.